塞尔达传说-烹饪菜单详情

游戏攻略

烹饪菜单

蘑菇烩饭

  • 菜谱地点 :哈特诺村杂货店(伊斯特-英德),店铺二楼台灯边上的阿伊比料理日记
  • 食材:海拉鲁蘑菇数朵、岩盐少许、海拉鲁米一把、山羊黄油一块。(可以将海拉鲁蘑菇替换生命三文鱼)

禽肉菜饭

  • 菜谱地点 :哈特诺村杂货店(伊斯特-英德),店铺二楼台灯边上的阿伊比料理日记
  • 食材:禽肉数块、海拉鲁米适量、禽蛋数颗、山羊黄油一块

鲜蛋布丁

  • 菜谱地点 :哈特诺村杂货店(伊斯特-英德),店铺二楼台灯边上的阿伊比料理日记
  • 食材:禽蛋数颗、鲜奶数瓶、蔗糖数条

蘑菇饭团

  • 菜谱地点:哈特诺村杂货店(伊斯特-英德),楼梯处的海报。
  • 食材:蘑菇数颗、海拉鲁米一把、岩盐少许,其中蘑菇可以是任意蘑菇制作成具有不同功效的蘑菇饭团。

速速苹果派

  • 食谱地点:湖畔驿站海报上
  • 食材:海拉鲁米一把、苹果一个、蔗糖一条、速速莲蓬一个、山羊黄油一块

生命贝肉杂烩

  • 菜谱地点:存在进门最后一个杂货铺墙上海报上。
  • 食材:海拉鲁米一把、鲜奶一瓶、山羊黄油一块、生命海螺一个、小麦一把

精力蜂蜜可丽饼

  • 菜谱地点:平原外围的驿站,墙上海报
  • 食材:塔邦挞小麦一把、蔗糖一条、精力蜂蜜、鲜奶一瓶、禽蛋一个

炒螃蟹

  • 菜谱地点:河畔驿站,墙上海报
  • 食材:螃蟹一只、鼓隆的调味料一瓶

  • 药方地点:湿地驿站墙上海报
  • 药材:蜥蜴战士犄角、蜻蜓

  • 药方地点:塔邦挞大桥驿站,墙上海报
  • 药材:波克布林的犄角、蜥蜴

苹果派

  • 食谱地点 :利特村杂货店,有本日记
  • 食材:塔邦挞小麦、山羊黄油一块、蔗糖一条。还可以更换苹果做出其他派。

坚果蛋糕

  • 食谱地点:利特村杂货店,有本日记
  • 食材:塔邦挞小麦、山羊黄油一块、蔗糖一条、橡子之类的坚果。

炸香焦

  • 食谱地点:利特村杂货店,有本日记
  • 食材:塔邦挞小麦、蔗糖一条、大剑香蕉

火辣焖肉

  • 食谱地点:利特驿站,墙上海报
  • 食材:塔邦挞小麦、山羊黄油、鲜牛奶一瓶、兽肉一块、暖暖草果一个

兽肉盖饭

  • 食谱地点:玛丽塔驿站,墙上海报
  • 食材:海拉鲁米一把、兽肉一块、岩盐少许。

速速蔬菜咖喱饭

  • 食谱地点:森林驿站,墙上海报
  • 食材:海拉鲁米一把、速速胡萝卜、鼓隆调味料

蛋挞

  • 食谱地点:南安卡莱驿站,墙上海报
  • 食材:禽蛋一个、山羊黄油一块、蔗糖一条、塔邦挞小麦一把

黄油苹果

  • 食谱地点:卡卡利特村烹饪锅边上的珂珂娜的厨房任务2
  • 食材:苹果、山羊黄油

速速浓菜汤

  • 食谱地点:卡卡利特村烹饪锅边上的珂珂娜的厨房任务1
  • 食材:速速胡萝卜、岩盐、鲜奶

海鲜杂烩饭

  • 食谱地点:不详、基丘乌的任务
  • 食材:山羊黄油、生命海螺、大剑鲷鱼、岩盐、海拉鲁米

食材来源

海拉鲁米

哈特诺村杂货店出钱购买、或去村里的稻田收割。

怪物商店

哈特诺村最上面的稻田,存在一块指示牌,写着怪物商店营业处。

资源下载链接为: https://pan.quark.cn/s/ab08c24cda4d 本项目基于 PyTorch 实现了 CSRNet(卷积稀疏表示网络)人群计数模型。CSRNet 是一种高效且精准的人群密度估计方法,尤其适合高密度场景下的人群计数。该模型借助卷积神经网络(CNN)的特性,利用稀疏表示来应对复杂背景和密集人群的挑战。以下将详细介绍 CSRNet 的核心概念、结构及实现过程,并阐述人群计数的重要性。 人群计数在公共场所安全监控、交通管理和大型活动组织等领域极为关键。准确估计人群数量有助于保障安全和优化管理。传统计数方法如人工计数或基于规则的方法效率低且易出错而,深度学习技术的引入,尤其是 CSRNet 这类模型,显著提高了计数的准确性和效率。 CSRNet 的核心在于其深度卷积网络结构和稀疏表示能力。该模型通过多尺度特征提取,适应不同大小的人头。其架构包含多个卷积层,每层后接 Leaky ReLU 激活函数,增强非线性表达能力。此外,CSRNet 引入了空洞卷积(也称 atrous convolution),可在不增加参数数量的情况下扩大感受野,更高效地捕捉大范围信息。具体架构包括:输入层接收预处理后的图像;基础网络通常使用预训练的 VGG16 提取多层次特征;多尺度特征融合通过不同扩张率的空洞卷积获得不同分辨率的特征图;解码器利用反卷积操作将低分辨率特征图恢复至原始尺寸,结合多尺度信息重建上下文;稀疏表示层是 CSRNet 的独特之处,通过稀疏编码和解码,将高维特征转换为低维稀疏表示,降低背景噪声影响,提升人头检测精度;输出层通过 1×1 卷积将特征图转化为人群密度图,再经全局平均池化和全连接层得到最终计数结果。 在实现过程中,需注意以下几点:数据预处理,如缩放、归一化、增强等,以提升模型泛化能力;训练策略,包括数据集划分、学习率调度、损失函数选择(如
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值