先给出算单个欧拉函数的链接。
大致方法其实和筛质数是类似的,其实,考虑到欧拉函数的定义,它和质数其实是关系甚紧的。
需要用到如下性质(p为质数):
1. phi(p)=p-1 因为质数p除了1以外的因数只有p,故1至p的整数只有p与p不互质
2. 如果i mod p = 0, 那么phi(i * p)=p * phi(i) ;若整数n与i互质,n+i与i依然互质
3.若i mod p ≠0, 那么phi(i * p)=phi(i) * (p-1);
i mod p 不为0且p为质数, 所以i与p互质, 那么根据欧拉函数的积性phi(i * p)=phi(i) * phi(p) 其中phi(p)=p-1即第一条性质
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cstring>
#include <vector>
using namespace std ;
const int maxn = 5000010 ;
bool is_prime[maxn] ;
int phi[maxn], n, m ;
vector <int> prime ;
void Euler_Phi () {
int i, j ;
phi[1] = 1 ;
for ( i = 0 ; i < maxn ; i ++ )
is_prime[i] = true ;
for ( i = 2 ; i < maxn ; i ++ ) {
if ( is_prime[i] ) {
prime.push_back(i) ;
phi[i] = i-1 ;
}
for ( j = 0 ; j < prime.size() ; j ++ ) {
if ( prime[j]*i >= maxn ) break ;
is_prime[prime[j]*i] = false ;
if ( i%prime[j] == 0 ) { phi[i*prime[j]] = phi[i]*prime[j] ; break ; }
else phi[i*prime[j]] = phi[i]*(prime[j]-1) ;
}
}
}
int main() {
//freopen ( "Phi.out", "w", stdout ) ;
int i, j, k ;
Euler_Phi() ;
for ( i = 1 ; i <= maxn ; i ++ )
printf ( "Phi ( %d ) = %d\n", i, phi[i] ) ;
return 0 ;
}