数论 - 筛法求欧拉函数

数论 - 筛法求欧拉函数

给定一个正整数n,求1~n中每个数的欧拉函数之和。

输入格式
共一行,包含一个整数n。

输出格式
共一行,包含一个整数,表示1~n中每个数的欧拉函数之和。

数据范围
1≤n≤106

输入样例:
6
输出样例:
12

分析:

先 预 处 理 欧 拉 函 数 再 求 和 。 先预处理欧拉函数再求和。

欧 拉 函 数 : 欧拉函数:
ϕ ( n ) = n ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) . . . ( 1 − 1 p n ) , 其 中 p 1 , p 2 , . . . , p n 是 n 的 质 因 子 。 \phi(n)=n(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_n}),其中p_1,p_2,...,p_n是n的质因子。 ϕ(n)=n(1p11)(1p21)...(1pn1)p1,p2,...,pnn

表 示 的 是 1 表示的是1 1~ n − 1 中 与 n 互 质 的 数 的 个 数 。 n-1中与n互质的数的个数。 n1n

考 虑 线 性 筛 的 过 程 : 考虑线性筛的过程: 线

① 、 若 i 是 质 数 , 则 ϕ ( i ) = i − 1 。 ①、若i是质数,则\phi(i)=i-1。 iϕ(i)=i1

② 、 若 i 是 合 数 , ②、若i是合数, i

若   i % p j = 0 , 则 i 的 质 因 子 与 i × p j 的 质 因 子 完 全 相 同 , 由 ϕ ( i ) = i ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) . . . ( 1 − 1 p i ) , 得 ϕ ( p j × i ) = p j × i ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) . . . ( 1 − 1 p i ) = p j × ϕ ( i ) 。 \\\qquad若\ i\%p_j =0,则i的质因子与i×p_j的质因子完全相同,由\phi(i)=i(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_i}),\\\qquad得\phi(p_j×i)=p_j×i(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_i})=p_j×\phi(i)。  i%pj=0ii×pjϕ(i)=i(1p11)(1p21)...(1pi1)ϕ(pj×i)=pj×i(1p11)(1p21)...(1pi1)=pj×ϕ(i)

若   i % p j ≠ 0 , 则 i 的 质 因 子 比 i × p j 少 p j , 由 ϕ ( i ) = i ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) . . . ( 1 − 1 p i ) , 得 ϕ ( p j × i ) = p j × i × ( 1 − 1 p j ) ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) . . . ( 1 − 1 p i ) = p j ( 1 − 1 p j ) × ϕ ( i ) 。 \\\qquad若\ i\%p_j ≠0,则i的质因子比i×p_j少p_j,由\phi(i)=i(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_i}),\\\qquad得\phi(p_j×i)=p_j×i×(1-\frac{1}{p_j})(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_i})=p_j(1-\frac{1}{p_j})×\phi(i)。  i%pj=0ii×pjpjϕ(i)=i(1p11)(1p21)...(1pi1)ϕ(pj×i)=pj×i×(1pj1)(1p11)(1p21)...(1pi1)=pj(1pj1)×ϕ(i)

代码:

#include<iostream>

using namespace std;

#define ll long long

const int N=1e6+10;

int n,phi[N],prime[N],cnt;
bool st[N];

ll get_euler(int x)
{
    phi[1]=1;
    for(int i=2;i<=x;i++)
    {
        if(!st[i])
        {
            prime[cnt++]=i;
            phi[i]=i-1;
        }
        for(int j=0;prime[j]<=x/i;j++)
        {
            st[i*prime[j]]=true;
            if(i%prime[j]==0)
            {
                phi[i*prime[j]]=prime[j]*phi[i];
                break;
            }
            else phi[i*prime[j]]=(prime[j]-1)*phi[i];
        }
    }
    
    ll res=0;
    for(int i=1;i<=x;i++) res+=phi[i];
    
    return res;
}

int main()
{
    cin>>n;
    cout<<get_euler(n)<<endl;
    
    return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值