基本原理:
DPCM是差分预测编码调制的缩写,是比较典型的预测编码系统。在DPCM系统中,需要注意的是预测器的输入是已经解码以后的样本。之所以不用原始样本来做预测,是因为在解码端无法得到原始样本,只能得到存在误差的样本。因此,在DPCM编码器中实际内嵌了一个解码器,如编码器中虚线框中所示。在一个DPCM系统中,有两个因素需要设计:预测器和量化器。理想情况下,预测器和量化器应进行联合优化。实际中,采用一种次优的设计方法:分别进行线性预测器和量化器的优化设计。
实验原理图:
在本次实验中,我们采用固定预测器和均匀量化器。预测器采用左侧、上方预测均可。量化器采用8比特均匀量化。本实验的目标是验证DPCM编码的编码效率。首先读取一个256级的灰度图像,采用自己设定的预测方法计算预测误差,并对预测误差进行8比特均匀量化(基本要求)
。还可对预测误差进行1比特、2比特和4比特的量化设计。
在DPCM编码器实现的过程中可同时输出预测误差图像和重建图像。将预测误差图像写入文件并将该文件输入Huffman编码器,得到输出码流、给出概率分布图并计算压缩比。将原始图像文件输入Huffman编码器,得到输出码流、给出概率分布图并计算压缩比。最后比较两种系统(1.DPCM+熵编码和2.仅进行熵编码)之间的编码效率(压缩比和图像质量)。压缩质量以PSNR进行计算
实验代码:
1.概率分布
#include<iostream>
#incl