消除VSCode Pylance的 reportMissingImports 黄线警告

问题描述

在VSCode中使用Pylance进行Python代码自动检查,经常会遇到如下问题:代码可以正常运行,可是Pylance总是会在某个import下画黄线,并报警告:reportMissingImports,如下图所示:

reportMissingImports
虽然这种报警告对代码运行没影响,但是看久了总是会觉得不舒服。

解决方案

  1. 在项目根目录下新建.vscode文件夹,并在.vscode文件夹下新建settings.json文件(如果已经有上述文件夹和文件,则跳过)
  2. 在settings.json文件中新增如下配置:
"python.analysis.diagnosticSeverityOverrides": {
        "reportMissingImports": "none",
    }
  1. 保存并重新打开之前报reportMissingImports警告的文件,即可发现警告消失。

参考

Pylance

过去的几十年里,计算机模拟在材料科学与技术中的应用对于材料设计的定量化产生了革命性的影响。各种热力学和动力学模型的组合使得预测材料加工过程中材料的成份、结构及性质成为了可能。 数学模型在产品研发和过程控制中日益显著的重要性佐证了对于热力学计算和动力学模拟的迫切需求。并且现代定量化的材料设计已经从计算热力学及动力学中获得了巨大的收益。 将多元多相体系中各元素/组元/相的热力学平衡和局部平衡信息以及材料加工过程中的相变动力学(以及化学反应、表面反应、形核、熟化、流体流动性等)信息整合在一个软件系统中对于解决化工、冶金、汽车、航天及电子工业中材料设计和过程控制中的实际问题是至关重要的,并将同时满足自然和环境工程中资源勘探、能源循环和废弃物处理的需要。热力学/动力学数据库最重要的特性之一就是提供了在不同外部和内部因素影响下研究热力学平衡以及动力学过程一种较之实验方法更为快捷的手段。此外,热力学及动力学数据库与工具手册相比可以为用户提供自相一致、可行的以及最新的数据。 一个通用的热力学/动力学数据库必将为多个传统上认为是不同的领域提供高品质的内部一致的数据,如冶金、钢铁/合金、陶瓷、高温气相平衡、溶液化学以及地球化学。在绝大多数的应用中,多元多相体系/过程中由于组分数量众多以至于必须采用计算机软件才可以快速并准确地计算各种热力学平衡及动力学过程。现有的Thermo-Calc 和DICTRA 数据库系统即是这样的成功的尝试,它是一套强大且精细的软件系统,简单易学同时可以用于计算各种热化学计算以及一些类型的动力学模拟。 通过Thermo-Calc 进行热力学计算以及DICTRA 进行动力学模拟可以显著地提高用户在研发设计新材料、选取热处理温度、优化制造过程、指导材料应用以及保护环境等方面的能力。这样一套功能全面的软件/数据库/接口程序在世界范围能被证明是最强大而灵活的工程软件,它可以大大减少耗时费力的实验,提高产品品质和控制环境影响。
### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值