最短路计数
题目描述
给出一个 N N N个顶点 M M M条边的无向无权图,顶点编号为 1 − N 1-N 1−N。问从顶点 1 1 1开始,到其他每个点的最短路有几条。
输入格式
第一行包含 2 2 2个正整数 N , M N,M N,M,为图的顶点数与边数。
接下来 M M M行,每行 2 2 2个正整数 x , y x,y x,y,表示有一条顶点 x x x连向顶点 y y y的边,请注意可能有自环与重边。
输出格式
共 N N N行,每行一个非负整数,第 i i i行输出从顶点 1 1 1到顶点 i i i有多少条不同的最短路,由于答案有可能会很大,你只需要输出$ ans \bmod 100003 后 的 结 果 即 可 。 如 果 无 法 到 达 顶 点 后的结果即可。如果无法到达顶点 后的结果即可。如果无法到达顶点i$则输出 0 0 0。
样例 #1
样例输入 #1
5 7
1 2
1 3
2 4
3 4
2 3
4 5
4 5
样例输出 #1
1
1
1
2
4
提示
1 1 1到 5 5 5的最短路有 4 4 4条,分别为 2 2 2条 1 − 2 − 4 − 5 1-2-4-5 1−2−4−5和 2 2 2条 1 − 3 − 4 − 5 1-3-4-5 1−3−4−5(由于 4 − 5 4-5 4−5的边有 2 2 2条)。
对于 20 % 20\% 20%的数据, N ≤ 100 N ≤ 100 N≤100;
对于 60 % 60\% 60%的数据, N ≤ 1000 N ≤ 1000 N≤1000;
对于 100 % 100\% 100%的数据, N < = 1000000 , M < = 2000000 N<=1000000,M<=2000000 N<=1000000,M<=2000000。
思路
距离各点相同,我们很轻易可以想到用bfs来求最短路,这里要注意的一个点就是,1点到各点的距离可以表示为各点在bfs搜索树中的深度。
那么我们在bfs过程中最重要的思路就是:
遍历一个点,如果是第一次访问,那么记录该点,ans[j]=ans[t],取模,标记深度,将j入队,用j来更新其他剩余点
如果不是第一次访问,则进行判断,如果深度相同,则是一条相同距离的最短路,ans+=ans[t],取模。
题解
#include <iostream>
#include <queue>
#include <cstring>
using namespace std;
const int N = 1e6 + 10;
const int M = 2e6 + 10;
const int mod = 100003;
int e[M], ne[M], h[N], idx;
int dis[N], visit[N], ans[N]; // dis表示深度,ans记录距离
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
void bfs()
{ //获取从1点到所有点的最短路
int s = 1;
queue<int> q;
q.push(s);
visit[1] = 1;
ans[1] = 1;
while (q.size())
{
int t = q.front();
q.pop();
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (!visit[j]) //如果该点未访问,则深度等于前一个点加一,ans等于前一个点
{
visit[j] = 1;
q.push(j); //只在第一次访问的时候加入队列,否则会重复遍历点
dis[j] = dis[t] + 1;
ans[j] = ans[t];
ans[j] %= mod;
}
else //如果该点已访问,则ans+=前一个点
{
if (dis[j] == dis[t] + 1)
{
ans[j] += ans[t];
ans[j] %= mod;
}
}
}
}
}
int main()
{
memset(h, -1, sizeof h);
int n, m;
cin >> n >> m;
for (int i = 0; i < m; i++)
{
int a, b;
scanf("%d%d", &a, &b);
add(a, b);
add(b, a);
}
bfs();
for (int i = 1; i <= n; i++)
printf("%d\n", ans[i]);
return 0;
}