洛谷最短路计数

最短路计数

题目描述

给出一个 N N N个顶点 M M M条边的无向无权图,顶点编号为 1 − N 1-N 1N。问从顶点 1 1 1开始,到其他每个点的最短路有几条。

输入格式

第一行包含 2 2 2个正整数 N , M N,M N,M,为图的顶点数与边数。

接下来 M M M行,每行 2 2 2个正整数 x , y x,y x,y,表示有一条顶点 x x x连向顶点 y y y的边,请注意可能有自环与重边。

输出格式

N N N行,每行一个非负整数,第 i i i行输出从顶点 1 1 1到顶点 i i i有多少条不同的最短路,由于答案有可能会很大,你只需要输出$ ans \bmod 100003 后 的 结 果 即 可 。 如 果 无 法 到 达 顶 点 后的结果即可。如果无法到达顶点 i$则输出 0 0 0

样例 #1

样例输入 #1

5 7
1 2
1 3
2 4
3 4
2 3
4 5
4 5

样例输出 #1

1
1
1
2
4

提示

1 1 1 5 5 5的最短路有 4 4 4条,分别为 2 2 2 1 − 2 − 4 − 5 1-2-4-5 1245 2 2 2 1 − 3 − 4 − 5 1-3-4-5 1345(由于 4 − 5 4-5 45的边有 2 2 2条)。

对于 20 % 20\% 20%的数据, N ≤ 100 N ≤ 100 N100

对于 60 % 60\% 60%的数据, N ≤ 1000 N ≤ 1000 N1000

对于 100 % 100\% 100%的数据, N < = 1000000 , M < = 2000000 N<=1000000,M<=2000000 N<=1000000,M<=2000000

思路

距离各点相同,我们很轻易可以想到用bfs来求最短路,这里要注意的一个点就是,1点到各点的距离可以表示为各点在bfs搜索树中的深度。
那么我们在bfs过程中最重要的思路就是:
遍历一个点,如果是第一次访问,那么记录该点,ans[j]=ans[t],取模,标记深度,将j入队,用j来更新其他剩余点
如果不是第一次访问,则进行判断,如果深度相同,则是一条相同距离的最短路,ans+=ans[t],取模。

题解

#include <iostream>
#include <queue>
#include <cstring>
using namespace std;
const int N = 1e6 + 10;
const int M = 2e6 + 10;
const int mod = 100003;
int e[M], ne[M], h[N], idx;
int dis[N], visit[N], ans[N]; // dis表示深度,ans记录距离

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
void bfs()
{ //获取从1点到所有点的最短路
    int s = 1;
    queue<int> q;
    q.push(s);
    visit[1] = 1;
    ans[1] = 1;
    while (q.size())
    {
        int t = q.front();
        q.pop();
        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (!visit[j]) //如果该点未访问,则深度等于前一个点加一,ans等于前一个点
            {
                visit[j] = 1;
                q.push(j); //只在第一次访问的时候加入队列,否则会重复遍历点
                dis[j] = dis[t] + 1;
                ans[j] = ans[t];
                ans[j] %= mod;
            }
            else //如果该点已访问,则ans+=前一个点
            {
                if (dis[j] == dis[t] + 1)
                {
                    ans[j] += ans[t];
                    ans[j] %= mod;
                }
            }
        }
    }
}
int main()
{
    memset(h, -1, sizeof h);
    int n, m;
    cin >> n >> m;
    for (int i = 0; i < m; i++)
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b);
        add(b, a);
    }
    bfs();
    for (int i = 1; i <= n; i++)
        printf("%d\n", ans[i]);
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值