栈的应用示例

#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "knLinkstack.h"

#if 0
//--------------------------------------------------------------------------
/*
	栈的应用1

	应用1:就近匹配
	几乎所有的编译器都具有检测括号是否匹配的能力
	如何实现编译器中的符号成对检测?
	#include <stdio.h> int main() { int a[4][4]; int (*p)[4]; p = a[0]; return 0;

	算法思路
	从第一个字符开始扫描
	当遇见普通字符时忽略,当遇见左符号时压入栈中
	当遇见右符号时从栈中弹出栈顶符号,并进行匹配
	匹配成功:继续读入下一个字符
	匹配失败:立即停止,并报错
	结束:
	成功: 所有字符扫描完毕,且栈为空
	失败:匹配失败或所有字符扫描完毕但栈非空

	当需要检测成对出现但又互不相邻的事物时
	可以使用栈“后进先出”的特性
	栈非常适合于需要“就近匹配”的场合
	*/
int isLeft(char c)
{
	int ret = 0;
	switch (c)
	{
	case '<':
	case '(':
	case '[':
	case '{':
	case '\'':
	case '\"':
		ret = 1;
		break;
	default:
		ret = 0;
		break;
	}
	return ret;
}

int isRight(char c)
{
	int ret = 0;
	switch (c)
	{
	case '>':
	case ')':
	case ']':
	case '}':
	case '\'':
	case '\"':
		ret = 1;
		break;
	default:
		ret = 0;
		break;
	}
	return ret;
}

int match(char left, char right)
{
	int ret = 0;
	switch (left)
	{
	case'<':
		ret = (right == '>');
		break;
	case'(':
		ret = (right == ')');
		break;
	case'[':
		ret = (right == ']');
		break;
	case'{':
		ret = (right == '}');
		break;
	case'\'':
		ret = (right == '\'');
		break;
	case'\"':
		ret = (right == '\"');
		break;
	default:
		ret = 0;
		break;
	}
	return ret;
}

int scanner(const char *code)
{
	//创建一个链栈
	LinkStack *stack = LinkStack_Create();
	int ret = 0;
	int i = 0;
	while (code[i] != 0){
		//当遇见普通字符时忽略,当遇见左符号时压入栈中
		if (isLeft(code[i])){
			LinkStack_Push(stack, (void*)(code + i));
		}
		//当遇见右符号时从栈中弹出栈顶符号,并进行匹配
		if (isRight(code[i])){
			char *c = (char*)LinkStack_Pop(stack);
			if ((NULL == c) || !match(*c, code[i])){
				printf("%c does not match!\n", code[i]);
				ret = 0;
				break;
			}
		}
		i++;
	}

	//成功: 所有字符扫描完毕,且栈为空 	失败:匹配失败或所有字符扫描完毕但栈非空
	if ((LinkStack_Size(stack) == 0) && (code[i] == '\0')){
		printf("succeed!\n");
		ret = 1;
	}
	else{
		printf("invalid code!\n");
	}
	LinkStack_Destroy(stack);
	return ret;
}
void test()
{
	const char* code = "#include <stdio.h> int main() { int a[4][4]; int (*p)[4]; p = a[0]; return 0;} ";
	scanner(code);
}

#endif

 


#if 0
//--------------------------------------------------------------------
/*
	应用2:中缀 后缀
	计算机的本质工作就是做数学运算,那计算机可以读入字符串
	“9 + (3 - 1) * 5 + 8 / 2”并计算值吗?
	后缀表达式  ==?符合计算机运算
	波兰科学家在20世纪50年代提出了一种将运算符放在数字后面的后缀表达式对应的,
	我们习惯的数学表达式叫做中缀表达式===》符合人类思考习惯

	实例:
	5 + 4=> 5 4 +
	1 + 2 * 3 => 1 2 3 * +
	8 + ( 3 – 1 ) * 5 => 8 3 1 – 5 * +
	中缀表达式符合人类的阅读和思维习惯
	后缀表达式符合计算机的“运算习惯”
	如何将中缀表达式转换成后缀表达式?

	中缀转后缀算法:
	遍历中缀表达式中的数字和符号
	对于数字:直接输出
	对于符号:
	左括号:进栈
	运算符号:与栈顶符号进行优先级比较
	若栈顶符号优先级低:此符号进栈  (默认栈顶若是左括号,左括号优先级最低)
	若栈顶符号优先级不低:将栈顶符号弹出并输出,之后进栈
	右括号:将栈顶符号弹出并输出,直到匹配左括号
	遍历结束:将栈中的所有符号弹出并输出
	*/

int isNumber(char c)
{
	return ('0' <= c) && (c <= '9');
}

int isOperator(char c)
{
	return (c == '+') || (c == '-') || (c == '*') || (c == '/');
}

int isLeft2(char c)
{
	return (c == '(');
}

int isRight2(char c)
{
	return (c == ')');
}

int priority(char c)
{
	int ret = 0;
	if ((c == '+') || (c == '-'))
	{
		ret = 1;
	}
	if ((c == '*') || (c == '/'))
	{
		ret = 2;
	}
	return ret;
}

void output(char c)
{
	if (c != '\0')
	{
		printf("%c", c);
	}
}

void transform(const char *exp)
{
	int i = 0;
	LinkStack *stack = LinkStack_Create();
	while (exp[i] != '\0'){
		//对于数字:直接输出
		if (isNumber(exp[i])){
			output(exp[i]);
		}
		else if (isOperator(exp[i])){	//运算符号 加减乘除: 与栈顶符号进行优先级比较
			while (priority(exp[i]) <= priority((char)(int)LinkStack_Top(stack))){
				output((char)(int)LinkStack_Pop(stack));	//若栈顶符号优先级低,将栈顶符号弹出并输出			
			}
			LinkStack_Push(stack, (void*)(int)exp[i]);	//此符号进栈(默认栈顶若是左括号,左括号优先级最低)
		}
		else if (isLeft2(exp[i])){		//遇到了 左括号 进栈
			LinkStack_Push(stack, (void*)(int)exp[i]);
		}
		else if (isRight2(exp[i])){		//遇到了 右括号
			while (!isLeft2((char)(int)LinkStack_Top(stack))){//右括号:将栈顶符号弹出并输出,直到匹配左括号
				output((char)(int)LinkStack_Pop(stack));
			}
			LinkStack_Pop(stack);		//将左括号弹出
		}
		else {
			printf("Invalid expression\n");
			break;
		}
		i++;
	}
	//遍历结束:将栈中的所有符号弹出并输出
	while ((LinkStack_Size(stack) > 0) && (exp[i] == '\0')){
		output((char)(int)LinkStack_Pop(stack));
	}
	LinkStack_Destroy(stack);
}



void test()
{
	char str[64] = "8+(3-1)*5";
	printf("中缀表达式符合人类的阅读和思维习惯:\n%s\n", str);
	printf("后缀表达式符合计算机的“运算习惯:\n");
	transform(str);
}

#endif

 

#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "knLinkstack.h"

#if 1
/*
	计算机是如何基于后缀表达式计算的?
	8 3 1 – 5 * +
	遍历后缀表达式中的数字和符号
	对于数字:进栈
	对于符号:
		从栈中弹出右操作数
		从栈中弹出左操作数
	根据符号进行运算
		将运算结果压入栈中
	遍历结束:栈中的唯一数字为计算结果
*/
int isNumber(char c)
{
	return ('0' <= c) && (c <= '9');
}

int isOperator(char c)
{
	return (c == '+') || (c == '-') || (c == '*') || (c == '/');
}

int value(char c)
{
	return (c - '0');
}

//计算结果
int express(int left, int right, char op)
{
	int ret = 0;
	switch (op)
	{
	case'+':
		ret = left + right;
		break;
	case'-':
		ret = left - right;
		break;
	case'*':
		ret = left * right;
		break;
	case'/':
		ret = left / right;
		break;
	default:
		break;
	}
	return ret;
}

int compute(const char*exp)
{
	LinkStack *stack = LinkStack_Create();
	int ret = 0;
	int i = 0;

	while (exp[i] != '\0')
	{
		//对于数字,进栈
		if (isNumber(exp[i])){
			LinkStack_Push(stack, (void*)value(exp[i]));
		}
		else if (isOperator(exp[i])){
			//对于符号:从栈中弹出右操作数从栈中弹出左操作数
			//根据符号进行运算 将运算结果压入栈中
			int right = (int)LinkStack_Pop(stack);
			int left = (int)LinkStack_Pop(stack);
			int result = express(left, right, exp[i]);
			LinkStack_Push(stack, (void*)result);
		}
		else{
			printf("invalid expression\n");
		}
		i++;
	}
	//遍历结束, 栈中唯一的数字为计算结果
	if ((LinkStack_Size(stack) == 1) && (exp[i] == '\0')){
		ret = (int)LinkStack_Pop(stack);
	}
	else{
		printf("invalid expression\n");
	}
	LinkStack_Destroy(stack);
	return ret;
}


void test()
{
	char str[64] = "831-5*+";
	printf("计算机计算后缀表达式:%s\n", str);
	printf("8 + (3 - 1) * 5  = %d\n", compute(str));
}

#endif

int main()
{
	test();
	printf("\n");
	system("pause");
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值