Spark 求TopN的优化思路

本文以求Top3为示范

首先想到的思路是整体排序后取出前三个,具体代码如下:

object TopN {
  def main(args: Array[String]): Unit = {
    val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("TopN")
    val sc = new SparkContext(conf)
    val data: RDD[Int] = sc.makeRDD((10000 to 1 by -1).toArray)
    val sorted: Array[Int] = data.sortBy(item => item).take(3)
    print("[" + sorted.mkString(",") + "]")
    sc.stop()
  }
}

job运行时间:
在这里插入图片描述

这样在在数据量比较大的情况下,所有数据都集中到一个executor中,可能会导致该工作节点内存溢出。解决方案是先对数据进行分区,取出每个分区的前三个,然后再对所有分区的前三名进行整体排序,具体代码如下:

object TopN {
  def main(args: Array[String]): Unit = {
    val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("TopN")
    val sc = new SparkContext(conf)
    val data: RDD[Int] = sc.makeRDD((10000 to 1 by -1).toArray)
    val sortedInPartition: RDD[Int] = data.mapPartitions(_.toArray.sorted.take(3).iterator)
    val sorted: Array[Int] = sortedInPartition.sortBy(item => item).take(3)
    print("[" + sorted.mkString(",") + "]")
    sc.stop()
  }
}

job运行时间:
在这里插入图片描述
由此可见,优化后的运行时间明显缩短了!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冰茶不冰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值