目录
4.3.测试比较堆排序、冒泡排序、快速排序的算法的用时,体会算法的魅力
1.概述
- 原地堆排序是一个稳定的排序算法。
- 时间复杂度为O(nlogn)——O(n) 【heapify建堆时间复杂度】+ O(nlogn) 【外层for循环O(n) * 内层siftDown操作O(logn)】= O(nlogn)。
- 空间复杂度为O(1)——未新建数组。
2.思路
- 将任意数组heapify——调整为最大堆。
- 此时整个数组中最大元素就在堆顶,排序后这个元素应处在数组末尾,则swap(0, arr.length - 1),此时最大值处在正确位置。
- 按此过程迭代到最后一个元素时,整个数组已经有序。(从小到大)
注:之前siftDown下沉操作是在整个数组上进行的,现在的下沉操作是,每当有一个元素交换最终位置时,下沉就不能再考虑该元素。
图解:
3.代码实现
public class SevenSort {
/**
* 将任意数进行原地堆排序
* @param arr
*/
public void heapSort(int[] arr) {
//将任意数组调整为最大堆,从最后一个非叶子节点开始
for (int i = (arr.length - 1 - 1) / 2; i >= 0 ; i--) {
siftDown(arr, i, arr.length);
}
//依次将堆顶元素和最后位置元素交换
//最开始:待排序数组[0...arr.length - 1],已排序数组[];
//交换第一个元素之后:待排序数组[0...arr.length - 2],已排序数组[arr.length - 1];
//交换第二个元素之后:待排序数组[0...arr.length - 3],已排序数组[arr.length - 2,arr.length - 1];
//此处终止条件不用写i = 0,当整个待排序数组就剩一个元素时,整个数组已经有序
for (int i = arr.length - 1; i >0; i--) {
swap(arr, 0, i);
siftDown(arr, 0, i);
}
}
/**
* 元素下沉操作
* @param arr
* @param i
* @param n 当前arr中有效的元素个数
*/
private void siftDown(int[] arr, int i, int n) {
//仍然存在子树
while((2 * i + 1) < n) {
int j = 2 * i + 1;
//右孩子存在且大于左子树值
if (j + 1 < n && arr[j + 1] > arr[j]) {
j = j + 1;
}
//j对应的下标就是左右子树的最大值
if(arr[i] >= arr[j]) {
break;
} else {
swap(arr,i,j);
i = j;
}
}
}
/**
* 交换操作
* @param arr
* @param i
* @param j
*/
private void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
public static void main(String[] args) {
int[] arr = {2,1,8,6,7,9,3,4,5};
SevenSort sort = new SevenSort();
sort.heapSort(arr);
System.out.println(Arrays.toString(arr));
}
}
4.对比冒泡排序
4.1.冒泡排序
/**
* 将任意数组进行冒泡排序
* @param arr
*/
public static void bubbleSort(int[] arr) {
//最外层表示要比较的趟数,此处-1是因为,整个待排序数组剩一个元素时,整个数组已经有序
for (int i = 0; i < arr.length - 1; i++) {
boolean isSwaped = false;
//此处-1是为了防止越界
for (int j = 0; j < arr.length - i - 1; j++) {
if(arr[j] > arr[j + 1]){
isSwaped = true;
swap(arr, j, j + 1);
}
}
if(!isSwaped){
//内层循环没有元素交换,整个数组有序
break;
}
}
}
4.2.判断数组中元素是否有序排列(小->大)
/**
* 判断数组中元素是否有序排列(小->大)
* @param arr
* @return
*/
public static boolean isSorted(int[] arr) {
for (int i = 0; i < arr.length - 1; i++) {
if(arr[i] > arr[i + 1]) {
return false;
}
}
return true;
}
4.3.测试比较堆排序、冒泡排序、快速排序的算法的用时,体会算法的魅力
public static void main(String[] args) {
SevenSort sort = new SevenSort();
//测试3种算法在相同数量级上的元素的排序性能
int n = 100000;
int[] data1 = new int[n]; //冒泡耗时极长
int[] data2;
int[] data3;
Random random = new Random();
for (int i = 0; i < data1.length; i++) {
data1[i] = random.nextInt(Integer.MAX_VALUE);
}
//此时data2和data3就是data1的一个深拷贝
data2 = Arrays.copyOf(data1,n);
data3 = Arrays.copyOf(data1,n);
//bubbleSort 最慢
long start = System.nanoTime(); //System.nanoTime() -> 获取当前系统时间,单位为纳秒 1ms = 100w ns
long end;
sort.bubbleSort(data1);
if(isSorted(data1)){
end = System.nanoTime();
System.out.println("bubble Sort 共耗时:" + (end - start) / 1000000 + "ms");
}
//heapSort 中
start = System.nanoTime();
sort.heapSort(data2);
if(isSorted(data2)){
end = System.nanoTime();
System.out.println("heap Sort 共耗时:" + (end - start) / 1000000 + "ms");
}
//quickSort 最快
start = System.nanoTime();
Arrays.sort(data3); //默认使用jdk内置的双轴快速排序/归并排序
if(isSorted(data3)){
end = System.nanoTime();
System.out.println("quick sort 共耗时:" + (end - start) / 1000000 + "ms");
}
}