AcWing算法基础课_排序和二分

本文详细介绍了基础算法中的快速排序(包括不稳定性和实现)、归并排序(稳定性及合并过程)、以及整数和浮点数的二分查找策略。通过递归和双指针技巧,展示了这些算法的核心原理和常见应用。
摘要由CSDN通过智能技术生成

1 基础算法

1.1 排序

1.1.1 快排(不稳定)平均O(nlogn) 最坏O(n)

基于分治(随意分)

假设要排序的数组为q

  1. 确定分界点x:q[l]或q[(l+r)/2]或q[r]或随机 随机一个数组里的数值
  2. 调整区间:保证左边所有的数都小于等于x,右边所有的数都大于等于x(分界点处不一定是x,x在任意位置)
  3. 递归处理左右两段

调整区间:

(1)暴力

​ 开两个数组a,b

​ 遍历数组q,<=x的放入a,>x的放入b

​ a放入q,b放入q

(2)优美

​ i指向q[0],每次向右移动一位,当i>x时,i停止移动

​ j指向q[n-1],每次向左移动一位,当j<x时,j停止移动

​ 当i,j均停止移动时,交换q[i],q[j]

​ 继续移动i,j重复上述过程,直至i,j相遇

//快排模板
void quick_sort(int q[], int l, int r)
{
    if(l>=r)return;	//只有一个数或者没有数直接返回
    
    int x = q[l], i = l - 1, j = r + 1;
    while(i<j){
        do i++; while(q[i]<x);
        do j--; while(q[j]>x);
        if(i<j)swap(q[i],q[j]);
    }
    quick_sort(q,l,j);
    quick_sort(q,j+1,r);
}
/*
执行完while循环后 ……ji……
若递归时取j、j+1,上面分界点就不能选r,否则会出现边界问题,一直递归下去,造成死循环
若递归时取i-1、i,上面分界点就不能选l,否则会出现边界问题,一直递归下去,造成死循环
背一个模板就行
*/
//AcWing785快速排序
#include<iostream>
using namespace std;

const int N = 1e6 + 10;

int n;
int q[N];

void quick_sort(int q[], int l, int r)
{
    if(l>=r)return;
    
    int x = q[l],i = l-1, j = r+1;
    while(i<j){
        do i++; while(q[i]<x);
        do j--; while(q[j]>x);
        if(i<j)swap(q[i],q[j]);
        
        qucik_sort(q,l,j);
        qucik_sort(q,j+1,r);
    }
}
int main()
{
    scanf("%d",&n);
    for(int i = 0; i<n; i++)scanf("%d",&q[i]);
    
    qucik_sort(q,0,n-1);
    
    for(int i = 0; i<n; i++)printf("%d",q[i]);
        
    return 0;
}
1.1.2 归并排序(稳定)O(nlogn)

基本思想——分治(中间位置分)

  1. 确定分界点:mid = (l + r)/2 下标的中间值
  2. 递归排序left,right
  3. 归并——合二为一 O(n)

双指针算法

//归并排序模板
void merge_sort(int q[], int l, int r)
{
    if(l>=r)return;
    
    //确定分界点
    int mid = (l+r) >> 1;
    
    //递归
    merge_sort(q,l,mid);
    meege_sort(q,mid+1,r);
    
    //归并
    int k = 0,i = l, j = mid + 1;	//i左半边的起点,j右半边的起点
    while(i <= mid && j <= r){
        if(q[i] <= q[j])temp[k++] = q[i++];
        else temp[k++] = q[j++];
    }
    while(i <= mid)temp[k++] = q[i++];
    while(j <= r)temp[k++] = q[j++];
    
    for(int i = l, j = 0; i<r; i++, j++)q[i] = tmp[j];
}
//AcWing787归并排序
#include<iostream>
using namespace std;

const int N = 1e6 + 10;

int n;
int q[N],temp[N];

void merge_sort(int q[], int l, int r)
{
    if(l>=r)return;
    
    //确定分界点
    int mid = (l+r) >> 1;
    
    //递归
    merge_sort(q,l,mid);
    meege_sort(q,mid+1,r);
    
    //归并
    int k = 0,i = l, j = mid + 1;	//i左半边的起点,j右半边的起点
    while(i <= mid && j <= r){
        if(q[i] <= q[j])temp[k++] = q[i++];
        else temp[k++] = q[j++];
    }
    while(i <= mid)temp[k++] = q[i++];
    while(j <= r)temp[k++] = q[j++];
    
    for(int i = l, j = 0; i<r; i++, j++)q[i] = tmp[j];
}
int main()
{
    scanf("%d",&n);
    for(int i = 0; i<n; i++)scanf("%d",&q[i]);
    
    merge_sort(q, 0, n-1);
    
    for(int i = 0; i<n; i++)printf("%d",q[i]);
    
    return 0;
}

1.2 二分

1.2.1 整数二分

有单点调性一定可以二分,没有单调性也有可能可以二分,单调性不是二分的本质

本质——找到一个性质,将整个区间一分为二,一半满足该性质,一半不满足

二分可以寻找边界,可以寻找左半边的右边界,也可以寻找右半边的左边界

二分一定有解,题目可能没解

答案落在区间内

  1. 二分出左半边的右边界

    mid = (l+r+1)/2

    if(check(mid))//check函数检验mid是否满足左半边的性质

    ​ true [mid,r] l = mid

    ​ false [l,mid-1] r = mid - 1

  2. 二分出右半边的左边界

    mid = (l+r)/2

    if(check(mid))//check函数检验mid是否满足右半边的性质

    ​ true [l,mid] r = mid

    ​ false [mid+1,r] l = mid +1

如何选择上述两种

看l = mid (mid = (l+r+1)/2)

还是 r = mid (mid = (l+r)/2)

为什么要+1?

当 r = l+1 时,mid = l, true的情况更新l = mid = l相当于没更新,会出现死循环

补上+1,mid = r true的情况更新l = mid = r,新区间为[r,r],停止循环

因为要更新l = mid,所以不允许一开始mid = l,会出现死循环

//二分出左半边的右边界
//区间[l,r]被划分成[l,mid-1]和[mid,r]时使用	
while(l<r){
	int mid = l+r+1 >>1;
	if(check(mid))l = mid;
	else r = mid-1;
}
//二分出右半边的左边界
//区间[l,r]被划分成[l,mid]和[mid+1,r]时使用
while(l<r){
	int mid = l+r >>1;
    if(check(mid))r = mid;
    else l = mid +1;
}
//AcWing789数的范围
#include<iostream>
using namespace std;

const int N = 100010;

int n,m;
int q[N];

int main()
{
    scanf("%d",&n);
    for(int i = 0; i<n; i++)scanf("%d", &q[i]);
    
    while(m--){
        int x;
        scanf("%d",&x);
        
        int l = 0,r = n-1;
        while(l<r){
            int mid = l+r >>1;
            if(q[mid]>=x)r = mid;
            else l = mid +1;
        }
    }
    if(q[l] != x)cout<<"-1 -1"<<endl;
    else{
        cout<<l<<' ';
        int l = 0, r = n-1;
        while(l<r){
            int mid = l+r+1 >>1;
            if(q[mid]<=x)l = mid;
            else r = mid-1;
        }
        cout<<l<<endl;
    }
    
    return 0;
}
1.2.2 浮点数二分

没有整除不需要处理边界问题

当r-l大于一个很小的数的时候认为找到了答案

//AcWing
//开平方
#include<iostream>
using namespace std;

int main()
{
    double x;
    cin>>x;
    
    double l = 0, r = x;
    while(r-l>1e-8){
        double mid = (l+r)/2;
        if(mid * mid >=x)r = mid;
        else l = mid;
    }
    cout<<l<<endl;
    
    return 0;
}
//AcWing790开三次方根
  • 9
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
二维差分是一种常用的数据结构和算法巧,用于高效地处理二维矩阵区间的更新和查询操作。它可以在O(1)的时间复杂度内完成区间的更新和查询操作,相比传统的暴力遍历方法,具有更高的效率。 二维差分的基本思想是将原始矩阵转化为一个差分矩阵,差分矩阵中的每个元素表示原始矩阵中相邻元素之间的差值。通过对差分矩阵进行预处理,可以实现对原始矩阵区间的更新和查询操作。 具体来说,二维差分的操作包括两个步骤:预处理和操作。预处理阶段,需要根据原始矩阵构建差分矩阵;操作阶段,可以通过对差分矩阵的更新来实现对原始矩阵区间的更新,同时可以通过对差分矩阵的求和来实现对原始矩阵区间的查询。 下面是二维差分的基本操作: 1. 构建差分矩阵:对于原始矩阵A,构建一个差分矩阵B,其中B[i][j] = A[i][j] - A[i-1][j] - A[i][j-1] + A[i-1][j-1]。 2. 区间更新:对于原始矩阵A的一个区间[left, right] x [top, bottom],将差分矩阵B的相应位置进行更新,即B[left][top] += val,B[right+1][top] -= val,B[left][bottom+1] -= val,B[right+1][bottom+1] += val。 3. 区间查询:对于原始矩阵A的一个区间[left, right] x [top, bottom],通过求和差分矩阵B的相应位置得到区间和,即sum = B[right][bottom] - B[left-1][bottom] - B[right][top-1] + B[left-1][top-1]。 二维差分可以广泛应用于各种算法问题,例如矩阵区间求和、矩阵区间更新等。它的时间复杂度较低,适用于处理大规模的数据。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值