pytorch入门第二课

第二课 词向量

第二课学习目标

学习词向量的概念
用Skip-thought模型训练词向量
学习使用PyTorch dataset和dataloader
学习定义PyTorch模型
学习torch.nn中常见的Module
Embedding
学习常见的PyTorch operations
bmm
logsigmoid
保存和读取PyTorch模型

在这一份notebook中,我们会(尽可能)尝试复现论文Distributed Representations of Words and Phrases and their Compositionality中训练词向量的方法. 我们会实现Skip-gram模型,并且使用论文中noice contrastive sampling的目标函数。

这篇论文有很多模型实现的细节,这些细节对于词向量的好坏至关重要。我们虽然无法完全复现论文中的实验结果,主要是由于计算资源等各种细节原因,但是我们还是可以大致展示如何训练词向量。

以下是一些我们没有实现的细节

subsampling:参考论文section 2.3

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as tud
from torch.nn.parameter import Parameter

from collections import Counter
import numpy as np
import random
import math

import pandas as pd
import scipy
import sklearn
from sklearn.metrics.pairwise import cosine_similarity

USE_CUDA = torch.cuda.is_available()

# 为了保证实验结果可以复现,我们经常会把各种random seed固定在某一个值
random.seed(53113)
np.random.seed(53113)
torch.manual_seed(53113)
if USE_CUDA:
    torch.cuda.manual_seed(53113)
    
# 设定一些超参数
    
K = 100 # number of negative samples
C = 3 # nearby words threshold
NUM_EPOCHS = 2 # The number of epochs of training
MAX_VOCAB_SIZE = 30000 # the vocabulary size
BATCH_SIZE = 128 # the batch size
LEARNING_RATE = 0.2 # the initial learning rate
EMBEDDING_SIZE = 100
       
    
LOG_FILE = "word-embedding.log"

# tokenize函数,把一篇文本转化成一个个单词
def word_tokenize(text):
    return text.split()

从文本文件中读取所有的文字,通过这些文本创建一个vocabulary
由于单词数量可能太大,我们只选取最常见的MAX_VOCAB_SIZE个单词
我们添加一个UNK单词表示所有不常见的单词
我们需要记录单词到index的mapping,以及index到单词的mapping,单词的count,单词的(normalized) frequency,以及单词总数。

with open("text8.train.txt", "r") as fin:
    text = fin.read()
    
text = [w for w in word_tokenize(text.lower())]
vocab = dict(Counter(text).most_common(MAX_VOCAB_SIZE-1))
vocab["<unk>"] = len(text) - np.sum(list(vocab.values()))
idx_to_word = [word for word in vocab.keys()] 
word_to_idx = {word:i for i, word in enumerate(idx_to_word)}

word_counts = np.array([count for count in vocab.values()], dtype=np.float32)
word_freqs = word_counts / np.sum(word_counts)
word_freqs = word_freqs ** (3./4.)
word_freqs = word_freqs / np.sum(word_freqs) # 用来做 negative sampling
VOCAB_SIZE = len(idx_to_word)
VOCAB_SIZE
30000

**

实现Dataloader

**
一个dataloader需要以下内容:

把所有text编码成数字,然后用subsampling预处理这些文字。
保存vocabulary,单词count,normalized word frequency
每个iteration sample一个中心词
根据当前的中心词返回context单词
根据中心词sample一些negative单词
返回单词的counts
这里有一个好的tutorial介绍如何使用PyTorch dataloader. 为了使用dataloader,我们需要定义以下两个function:

len function需要返回整个数据集中有多少个item
get 根据给定的index返回一个item
有了dataloader之后,我们可以轻松随机打乱整个数据集,拿到一个batch的数据等等。

class WordEmbeddingDataset(tud.Dataset):
    def __init__(self, text, word_to_idx, idx_to_word, word_freqs, word_counts):
        ''' text: a list of words, all text from the training dataset
            word_to_idx: the dictionary from word to idx
            idx_to_word: idx to word mapping
            word_freq: the frequency of each word
            word_counts: the word counts
        '''
        super(WordEmbeddingDataset, self).__init__()
        self.text_encoded = [word_to_idx.get(t, VOCAB_SIZE-1) for t in text]
        self.text_encoded = torch.Tensor(self.text_encoded).long()
        self.word_to_idx = word_to_idx
        self.idx_to_word = idx_to_word
        self.word_freqs = torch.Tensor(word_freqs)
        self.word_counts = torch.Tensor(word_counts)
        
    def __len__(self):
        ''' 返回整个数据集(所有单词)的长度
        '''
        return len(self.text_encoded)
        
    def __getitem__(self, idx):
        ''' 这个function返回以下数据用于训练
            - 中心词
            - 这个单词附近的(positive)单词
            - 随机采样的K个单词作为negative sample
        '''
        center_word = self.text_encoded[idx]
        pos_indices = list(range(idx-C, idx)) + list(range(idx+1, idx+C+1))
        pos_indices = [i%len(self.text_encoded) for i in pos_indices]
        pos_words = self.text_encoded[pos_indices] 
        neg_words = torch.multinomial(self.word_freqs, K * pos_words.shape[0], True)
        
        return center_word, pos_words, neg_words 

创建dataset和dataloader

dataset = WordEmbeddingDataset(text, word_to_idx, idx_to_word, word_freqs, word_counts)
dataloader = tud.DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=4)    

定义PyTorch模型

class EmbeddingModel(nn.Module):
    def __init__(self, vocab_size, embed_size):
        ''' 初始化输出和输出embedding
        '''
        super(EmbeddingModel, self).__init__()
        self.vocab_size = vocab_size
        self.embed_size = embed_size
        
        initrange = 0.5 / self.embed_size
        self.out_embed = nn.Embedding(self.vocab_size, self.embed_size, sparse=False)
        self.out_embed.weight.data.uniform_(-initrange, initrange)
        
        
        self.in_embed = nn.Embedding(self.vocab_size, self.embed_size, sparse=False)
        self.in_embed.weight.data.uniform_(-initrange, initrange)
        
        
    def forward(self, input_labels, pos_labels, neg_labels):
        '''
        input_labels: 中心词, [batch_size]
        pos_labels: 中心词周围 context window 出现过的单词 [batch_size * (window_size * 2)]
        neg_labelss: 中心词周围没有出现过的单词,从 negative sampling 得到 [batch_size, (window_size * 2 * K)]
        
        return: loss, [batch_size]
        '''
        
        batch_size = input_labels.size(0)
        
        input_embedding = self.in_embed(input_labels) # B * embed_size
        pos_embedding = self.out_embed(pos_labels) # B * (2*C) * embed_size
        neg_embedding = self.out_embed(neg_labels) # B * (2*C * K) * embed_size
      
        log_pos = torch.bmm(pos_embedding, input_embedding.unsqueeze(2)).squeeze() # B * (2*C)
        log_neg = torch.bmm(neg_embedding, -input_embedding.unsqueeze(2)).squeeze() # B * (2*C*K)

        log_pos = F.logsigmoid(log_pos).sum(1)
        log_neg = F.logsigmoid(log_neg).sum(1) # batch_size
       
        loss = log_pos + log_neg
        
        return -loss
    
    def input_embeddings(self):
        return self.in_embed.weight.data.cpu().numpy()

定义一个模型以及把模型移动到GPU

model = EmbeddingModel(VOCAB_SIZE, EMBEDDING_SIZE)
if USE_CUDA:
    model = model.cuda()

下面是评估模型的代码,以及训练模型的代码

def evaluate(filename, embedding_weights): 
    if filename.endswith(".csv"):
        data = pd.read_csv(filename, sep=",")
    else:
        data = pd.read_csv(filename, sep="\t")
    human_similarity = []
    model_similarity = []
    for i in data.iloc[:, 0:2].index:
        word1, word2 = data.iloc[i, 0], data.iloc[i, 1]
        if word1 not in word_to_idx or word2 not in word_to_idx:
            continue
        else:
            word1_idx, word2_idx = word_to_idx[word1], word_to_idx[word2]
            word1_embed, word2_embed = embedding_weights[[word1_idx]], embedding_weights[[word2_idx]]
            model_similarity.append(float(sklearn.metrics.pairwise.cosine_similarity(word1_embed, word2_embed)))
            human_similarity.append(float(data.iloc[i, 2]))

    return scipy.stats.spearmanr(human_similarity, model_similarity)# , model_similarity

def find_nearest(word):
    index = word_to_idx[word]
    embedding = embedding_weights[index]
    cos_dis = np.array([scipy.spatial.distance.cosine(e, embedding) for e in embedding_weights])
    return [idx_to_word[i] for i in cos_dis.argsort()[:10]]

训练模型:

模型一般需要训练若干个epoch
每个epoch我们都把所有的数据分成若干个batch
把每个batch的输入和输出都包装成cuda tensor
forward pass,通过输入的句子预测每个单词的下一个单词
用模型的预测和正确的下一个单词计算cross entropy loss
清空模型当前gradient
backward pass
更新模型参数
每隔一定的iteration输出模型在当前iteration的loss,以及在验证数据集上做模型的评估

optimizer = torch.optim.SGD(model.parameters(), lr=LEARNING_RATE)
for e in range(NUM_EPOCHS):
    for i, (input_labels, pos_labels, neg_labels) in enumerate(dataloader):
        
        
        # TODO
        input_labels = input_labels.long()
        pos_labels = pos_labels.long()
        neg_labels = neg_labels.long()
        if USE_CUDA:
            input_labels = input_labels.cuda()
            pos_labels = pos_labels.cuda()
            neg_labels = neg_labels.cuda()
            
        optimizer.zero_grad()
        loss = model(input_labels, pos_labels, neg_labels).mean()
        loss.backward()
        optimizer.step()

        if i % 100 == 0:
            with open(LOG_FILE, "a") as fout:
                fout.write("epoch: {}, iter: {}, loss: {}\n".format(e, i, loss.item()))
                print("epoch: {}, iter: {}, loss: {}".format(e, i, loss.item()))
            
        
        if i % 2000 == 0:
            embedding_weights = model.input_embeddings()
            sim_simlex = evaluate("simlex-999.txt", embedding_weights)
            sim_men = evaluate("men.txt", embedding_weights)
            sim_353 = evaluate("wordsim353.csv", embedding_weights)
            with open(LOG_FILE, "a") as fout:
                print("epoch: {}, iteration: {}, simlex-999: {}, men: {}, sim353: {}, nearest to monster: {}\n".format(
                    e, i, sim_simlex, sim_men, sim_353, find_nearest("monster")))
                fout.write("epoch: {}, iteration: {}, simlex-999: {}, men: {}, sim353: {}, nearest to monster: {}\n".format(
                    e, i, sim_simlex, sim_men, sim_353, find_nearest("monster")))
                
    embedding_weights = model.input_embeddings()
    np.save("embedding-{}".format(EMBEDDING_SIZE), embedding_weights)
    torch.save(model.state_dict(), "embedding-{}.th".format(EMBEDDING_SIZE))
epoch: 0, iter: 0, loss: 420.04736328125
epoch: 0, iteration: 0, simlex-999: SpearmanrResult(correlation=0.002806243285464091, pvalue=0.9309107582703205), men: SpearmanrResult(correlation=-0.03578915454199749, pvalue=0.06854012381329619), sim353: SpearmanrResult(correlation=0.02468906830123471, pvalue=0.6609497549092586), nearest to monster: ['monster', 'communism', 'bosses', 'microprocessors', 'infectious', 'debussy', 'unesco', 'tantamount', 'offices', 'tischendorf']

在 MEN 和 Simplex-999 数据集上做评估

embedding_weights = model.input_embeddings()
print("simlex-999", evaluate("simlex-999.txt", embedding_weights))
print("men", evaluate("men.txt", embedding_weights))
print("wordsim353", evaluate("wordsim353.csv", embedding_weights))
simlex-999 SpearmanrResult(correlation=0.17251697429101504, pvalue=7.863946056740345e-08)
men SpearmanrResult(correlation=0.1778096817088841, pvalue=7.565661657312768e-20)
wordsim353 SpearmanrResult(correlation=0.27153702278146635, pvalue=8.842165885381714e-07)

寻找nearest neighbors

for word in ["good", "fresh", "monster", "green", "like", "america", "chicago", "work", "computer", "language"]:
    print(word, find_nearest(word))
good ['good', 'bad', 'perfect', 'hard', 'questions', 'alone', 'money', 'false', 'truth', 'experience']
fresh ['fresh', 'grain', 'waste', 'cooling', 'lighter', 'dense', 'mild', 'sized', 'warm', 'steel']
monster ['monster', 'giant', 'robot', 'hammer', 'clown', 'bull', 'demon', 'triangle', 'storyline', 'slogan']
green ['green', 'blue', 'yellow', 'white', 'cross', 'orange', 'black', 'red', 'mountain', 'gold']
like ['like', 'unlike', 'etc', 'whereas', 'animals', 'soft', 'amongst', 'similarly', 'bear', 'drink']
america ['america', 'africa', 'korea', 'india', 'australia', 'turkey', 'pakistan', 'mexico', 'argentina', 'carolina']
chicago ['chicago', 'boston', 'illinois', 'texas', 'london', 'indiana', 'massachusetts', 'florida', 'berkeley', 'michigan']
work ['work', 'writing', 'job', 'marx', 'solo', 'label', 'recording', 'nietzsche', 'appearance', 'stage']
computer ['computer', 'digital', 'electronic', 'audio', 'video', 'graphics', 'hardware', 'software', 'computers', 'program']
language ['language', 'languages', 'alphabet', 'arabic', 'grammar', 'pronunciation', 'dialect', 'programming', 'chinese', 'spelling']

单词之间的关系

man_idx = word_to_idx["man"] 
king_idx = word_to_idx["king"] 
woman_idx = word_to_idx["woman"]
embedding = embedding_weights[woman_idx] - embedding_weights[man_idx] + embedding_weights[king_idx]
cos_dis = np.array([scipy.spatial.distance.cosine(e, embedding) for e in embedding_weights])
for i in cos_dis.argsort()[:20]:
    print(idx_to_word[i])
king
henry
charles
pope
queen
iii
prince
elizabeth
alexander
constantine
edward
son
iv
louis
emperor
mary
james
joseph
frederick
francis
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值