C. Cycles
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output
John Doe started thinking about graphs. After some thought he decided that he wants to paint an undirected graph, containing exactly k cycles of length 3.
A cycle of length 3 is an unordered group of three distinct graph vertices a, b and c, such that each pair of them is connected by a graph edge.
John has been painting for long, but he has not been a success. Help him find such graph. Note that the number of vertices there shouldn’t exceed 100, or else John will have problems painting it.
Input
A single line contains an integer k (1 ≤ k ≤ 105) — the number of cycles of length 3 in the required graph.
Output
In the first line print integer n (3 ≤ n ≤ 100) — the number of vertices in the found graph. In each of next n lines print n characters “0” and “1”: the i-th character of the j-th line should equal “0”, if vertices i and j do not have an edge between them, otherwise it should equal “1”. Note that as the required graph is undirected, the i-th character of the j-th line must equal the j-th character of the i-th line. The graph shouldn’t contain self-loops, so the i-th character of the i-th line must equal “0” for all i.
Examples
Input
1
Output
3
011
101
110
Input
10
Output
5
01111
10111
11011
11101
11110
刚开始仅仅考虑~~~只要不够就建边~~ZSZZ~~~在建边之前考虑建边后的贡献~~~建边后保证不超出 N ~~~必存在一组解~~
AC代码 :
#include<cstdio>
int ma[110][110];
int main()
{
int N,nl;
scanf("%d",&N);
ma[1][2] = ma[2][1] = 1;
for(nl = 3 ; nl <= 100 ; nl++){
for(int i = 1 ; i < nl ; i++){
int cut = 0;
for(int j = 1 ; j < i ; j++) // 在 i 和 nl 建边后的贡献,即在 i和 nl 建边后 3 环的个数
if(ma[j][i] && ma[j][nl])
cut++;
if(N >= cut){
N -= cut;
ma[nl][i] = ma[i][nl] = 1;
}
if(!N) break;
}
if(!N) break;
}
printf("%d\n",nl);
for(int i = 1 ; i <= nl ; i++){
for(int j = 1 ; j <= nl ; j++)
printf("%d",ma[i][j]);
printf("\n");
}
return 0;
}