# Codeforces 233C Cycles（图的三元环）

C. Cycles
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

John Doe started thinking about graphs. After some thought he decided that he wants to paint an undirected graph, containing exactly kcycles of length 3.

A cycle of length 3 is an unordered group of three distinct graph vertices ab and c, such that each pair of them is connected by a graph edge.

John has been painting for long, but he has not been a success. Help him find such graph. Note that the number of vertices there shouldn't exceed 100, or else John will have problems painting it.

Input

A single line contains an integer k (1 ≤ k ≤ 105) — the number of cycles of length 3 in the required graph.

Output

In the first line print integer n (3 ≤ n ≤ 100) — the number of vertices in the found graph. In each of next n lines print n characters "0" and "1": the i-th character of the j-th line should equal "0", if vertices i and j do not have an edge between them, otherwise it should equal "1". Note that as the required graph is undirected, the i-th character of the j-th line must equal the j-th character of the i-th line. The graph shouldn't contain self-loops, so the i-th character of the i-th line must equal "0" for all i.

Examples
input
1

output
3
011
101
110

input
10

output
5
01111
10111
11011
11101
11110

AC CODE:

#include<stdio.h>
#include<cstring>
#include<algorithm>
#define HardBoy main()
#define ForMyLove return 0;
using namespace std;
const int MYDD = 1103;

int HardBoy {
int k, Map[128][128];
scanf("%d", &k);

int n = 1;
while((n+1)*(n+2)*(n+3)/6 <= k) n++;
for (int i = 0; i < n+2; i++)	{
for (int j = 0;  j < n+2; j++) {
Map[i][j] = 1;
}
Map[i][i] = 0;
}

int node = n + 2, l = (n+1)*(n+2)*n/6;
if (l < k) {
while (l < k) {
Map[0][node] = 1;
Map[node][0] = 1;
int j = 1;
int t = 1;
while (l+t <= k) {
Map[t][node] = 1;
Map[node][t] = 1;
l += t;
t++;
}
if (l < k)
node++;
}
node++;
}

printf("%d\n", node);
for(int j = 0; j < node; j++) {
for(int k = 0; k < node; k++) {
printf("%d", Map[j][k]);
}
printf("\n");
}
ForMyLove
}

#include<stdio.h>
#include<cstring>
#include<algorithm>
#define HardBoy main()
#define ForMyLove return 0;
using namespace std;
const int MYDD = 1103;

int HardBoy {
int k, Map[128][128];
scanf("%d", &k);
int n = 3;
while(n*(n-1)*(n-2)/6 <= k) n++;
n--;
for(int j = 0; j < n; j++) {
for(int k = 0; k < n; k++) {
Map[j][k] = 1;
}
Map[j][j] = 0;
}
printf("%d\n", n);
for(int j = 0; j < n; j++) {
for(int k = 0; k < n; k++) {
printf("%d", Map[j][k]);
}
printf("\n");
}
ForMyLove
}