1、题目:整数拆分
给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。 返回 你可以获得的最大乘积 。
2、解题思路
动规五部曲
1、确定dp数组以及下标的含义,分拆数字i,可以得到的最大乘积为dp[i]。
2、确定递推公式,从1遍历j,然后有两种渠道得到dp[i]。一个是j * (i - j) 直接相乘。一个是j * dp[i - j],相当于是拆分(i - j)。dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j))
3、dp数组如何初始化,dp[2] = 1
4、确定遍历顺序,dp[i] 是依靠 dp[i - j]的状态,所以遍历i一定是从前向后遍历。
5、举例推导dp数组
3、代码
class Solution {
public:
int integerBreak(int n) {
vector<int> dp(n + 1);
dp[2] = 1;
for (int i = 3; i <= n ; i++) {
for (int j = 1; j < i - 1; j++) {
dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
}
}
return dp[n];
}
};