朝暮之恋!

          朝暮之恋!

­婚纱的呼唤,

­ 钻戒的永恒.

­柏拉图的爱恋,

­丘比特的爱箭.

­深深的滋润,灌溉着我对你的思念,

­对你的爱.

­夜晚的星空无论多美,

­城市的街头无论多么华丽.,

­没有你的陪伴一切都是那么的平静寂寞.

­一张床,两张被子,一段情,两份思念

­朝暮之恋!

基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoo
一个关于城市自行车出行的数据集,它记录了城市中自行车租赁服务的详细出行信息。该数据集通常包含多个字段,例如每次骑行的起始时间、结束时间、出发地点和到达地点的地理坐标(如经度和纬度)、骑行时长、自行车编号、用户类型(如注册会员或临时用户)等。这些丰富的数据维度为研究城市交通模式、居民出行习惯以及自行车租赁服务的运营效率提供了宝贵的信息。 数据集的规模可能因城市大小和数据收集时间跨度而异,但通常包含数万甚至数十万条记录。通过分析这些数据,可以发现城市中某些区域的骑行热度较高,例如商业区或旅游景点附近,这些地方可能是人们使用自行车的高频区域。同时,骑行时间的分布也能揭示出人们的出行规律,例如在工作日的早晚高峰时段,骑行量可能会显著增加,而在周末或节假日,骑行的目的地可能会更多地集中在休闲娱乐场所。 此外,该数据集还可以用于评估自行车租赁服务的运营状况,比如通过分析不同时间段的骑行时长和频率,了解自行车的使用效率和周转情况。对于城市规划者来说,这些数据有助于优化自行车道的布局,改善交通拥堵,促进绿色出行。而对于研究人员,它可以作为研究城市交通、环境影响以及社会行为模式的有力工具。总之,该数据集是一个极具价值的数据资源,能够为多个领域的研究和决策提供支持。
在Python中,如果你想统计古文《醉翁亭记》中每个字或词语的出现次数,可以采用文本处理(Text Processing)的相关库,如`collections`模块中的`Counter`类。这里是一个简单的例子: ```python # 首先需要有一份《醉翁亭记》的文本数据 text = """ 环滁皆山也。其西南诸峰,林壑尤美,望之蔚然而深秀者,琅琊也。山行六七里,渐闻水声潺潺,而泻出于两峰之间者,酿泉也。峰回路转,有亭翼然临于泉上者,醉翁亭也。 醉翁之意不在酒,在乎山水之间也。山水之乐,得之心而寓之酒也。若夫日出而林霏开,云归而岩穴暝,晦明变化者,山间之朝暮也。野芳发而幽香,佳木秀而繁阴,风霜高洁,水落而石出者,山间之四时也。朝而往,暮而归,四时之景不同,而乐亦无穷也。 至于负者歌于途,行者休于树,前者呼,后者应,伛偻提携,往来而不绝者,滁人游也。宴酣之乐,非丝非竹,射者中,弈者胜,觥筹交错,起坐而喧哗者,众宾欢也。苍颜白发,颓然乎其间者,太守醉也。 已而夕阳在山,人影散乱,太守归而宾客从也。树林阴翳,鸣声上下,游人去而禽鸟乐也。然而禽鸟知山林之乐,而不知人之乐;人知从太守游而乐,而不知太守之乐其乐也。醉能同其乐,醒能述以文者,太守也。太守谓谁?庐陵欧阳修也。 """ # 将文本分割成单个字符或词语 ifiltered_text = "".join(text.split()) # 如果你想计算单词频率,就去掉这一行 # 使用Counter统计频率 from collections import Counter word_counts = Counter(ifiltered_text) # 打印结果 for word, count in word_counts.most_common(): # 显示最常见的词语及其次数 print(f"{word}: {count}")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值