task03

多路召回

所谓的“多路召回”策略,就是指采用不同的策略、特征或简单模型,分别召回一部分候选集,然后把候选集混合在一起供后续排序模型使用,可以明显的看出,“多路召回策略”是在“计算速度”和“召回率”之间进行权衡的结果。其中,各种简单策略保证候选集的快速召回,从不同角度设计的策略保证召回率接近理想的状态,不至于损伤排序效果。如下图是多路召回的一个示意图,在多路召回中,每个策略之间毫不相关,所以一般可以写并发多线程同时进行,这样可以更加高效。
在这里插入图片描述
上图只是一个多路召回的例子,也就是说可以使用多种不同的策略来获取用户排序的候选商品集合,而具体使用哪些召回策略其实是与业务强相关的 ,针对不同的任务就会有对于该业务真实场景下需要考虑的召回规则。例如新闻推荐,召回规则可以是“热门视频”、“导演召回”、“演员召回”、“最近上映“、”流行趋势“、”类型召回“等等

# coding: utf-8

# In[7]:


import pandas as pd  
import numpy as np
from tqdm import tqdm  
from collections import defaultdict  
import os, math, warnings, math, pickle
from tqdm import tqdm
# import faiss
import collections
import random
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import LabelEncoder
from datetime import datetime
from deepctr.feature_column import SparseFeat, VarLenSparseFeat
from sklearn.preprocessing import LabelEncoder
from tensorflow.python.keras import backend as K
from tensorflow.python.keras.models import Model
from tensorflow.python.keras.preprocessing.sequence import pad_sequences
from deepmatch.models import *
from deepmatch.utils import sampledsoftmaxloss
warnings.filterwarnings('ignore')


# In[8]:


data_path = 'C:/Users/LENOVO/Desktop/datawhaleRES/'
save_path = 'C:/Users/LENOVO/Desktop/datawhaleRES/result/'
# 做召回评估的一个标志, 如果不进行评估就是直接使用全量数据进行召回
metric_recall = False


# In[13]:


# debug模式: 从训练集中划出一部分数据来调试代码
def get_all_click_sample(data_path, sample_nums=10000):
    """
        训练集中采样一部分数据调试
        data_path: 原数据的存储路径
        sample_nums: 采样数目(这里由于机器的内存限制,可以采样用户做)
    """
    all_click = pd.read_csv(data_path + 'train_click_log.csv')
    all_user_ids = all_click.user_id.unique()

    sample_user_ids = np.random.choice(all_user_ids, size=sample_nums, replace=False) 
    all_click = all_click[all_click['user_id'].isin(sample_user_ids)]
    
    all_click = all_click.drop_duplicates((['user_id', 'click_article_id', 'click_timestamp']))
    return all_click

# 读取点击数据,这里分成线上和线下,如果是为了获取线上提交结果应该讲测试集中的点击数据合并到总的数据中
# 如果是为了线下验证模型的有效性或者特征的有效性,可以只使用训练集
def get_all_click_df(data_path = 'C:/Users/LENOVO/Desktop/datawhaleRES/', offline=True):
    if offline:
        all_click = pd.read_csv(data_path + 'train_click_log.csv')
    else:
        trn_click = pd.read_csv(data_path + 'train_click_log.csv')
        tst_click = pd.read_csv(data_path + 'testA_click_log.csv')

        all_click = trn_click.append(tst_click)
    
    all_click = all_click.drop_duplicates((['user_id', 'click_article_id', 'click_timestamp']))
    return all_click


# In[14]:


# 读取文章的基本属性
def get_item_info_df(data_path):
    item_info_df = pd.read_csv(data_path + 'articles.csv')
    
    # 为了方便与训练集中的click_article_id拼接,需要把article_id修改成click_article_id
    item_info_df = item_info_df.rename(columns={'article_id': 'click_article_id'})
    
    return item_info_df


# In[15]:


# 读取文章的Embedding数据
def get_item_emb_dict(data_path):
    item_emb_df = pd.read_csv(data_path + 'articles_emb.csv')
    
    item_emb_cols = [x for x in item_emb_df.columns if 'emb' in x]
    item_emb_np = np.ascontiguousarray(item_emb_df[item_emb_cols])
    # 进行归一化
    item_emb_np = item_emb_np / np.linalg.norm(item_emb_np, axis=1, keepdims=True)

    item_emb_dict = dict(zip(item_emb_df['article_id'], item_emb_np))
    pickle.dump(item_emb_dict, open(save_path + 'item_content_emb.pkl', 'wb'))
    
    return item_emb_dict


# In[16]:


max_min_scaler = lambda x : (x-np.min(x))/(np.max(x)-np.min(x))


# In[17]:


# 采样数据
# all_click_df = get_all_click_sample(data_path)

# 全量训练集
all_click_df = get_all_click_df(offline=False)

# 对时间戳进行归一化,用于在关联规则的时候计算权重
all_click_df['click_timestamp'] = all_click_df[['click_timestamp']].apply(max_min_scaler)


# In[ ]:


item_info_df = get_item_info_df(data_path)


# In[ ]:


item_emb_dict = get_item_emb_dict(data_path)


# In[18]:


# 根据点击时间获取用户的点击文章序列   {user1: [(item1, time1), (item2, time2)..]...}
def get_user_item_time(click_df):
    
    click_df = click_df.sort_values('click_timestamp')
    
    def make_item_time_pair(df):
        return list(zip(df['click_article_id'], df['click_timestamp']))
    
    user_item_time_df = click_df.groupby('user_id')['click_article_id', 'click_timestamp'].apply(lambda x: make_item_time_pair(x))                                                            .reset_index().rename(columns={0: 'item_time_list'})
    user_item_time_dict = dict(zip(user_item_time_df['user_id'], user_item_time_df['item_time_list']))
    
    return user_item_time_dict


# In[19]:


# 根据时间获取商品被点击的用户序列  {item1: [(user1, time1), (user2, time2)...]...}
# 这里的时间是用户点击当前商品的时间,好像没有直接的关系。
def get_item_user_time_dict(click_df):
    def make_user_time_pair(df):
        return list(zip(df['user_id'], df['click_timestamp']))
    
    click_df = click_df.sort_values('click_timestamp')
    item_user_time_df = click_df.groupby('click_article_id')['user_id', 'click_timestamp'].apply(lambda x: make_user_time_pair(x))                                                            .reset_index().rename(columns={0: 'user_time_list'})
    
    item_user_time_dict = dict(zip(item_user_time_df['click_article_id'], item_user_time_df['user_time_list']))
    return item_user_time_dict


# In[21]:


# 获取当前数据的历史点击和最后一次点击
def get_hist_and_last_click(all_click):
    
    all_click = all_click.sort_values(by=['user_id', 'click_timestamp'])
    click_last_df = all_click.groupby('user_id').tail(1)

    # 如果用户只有一个点击,hist为空了,会导致训练的时候这个用户不可见,此时默认泄露一下
    def hist_func(user_df):
        if len(user_df) == 1:
            return user_df
        else:
            return user_df[:-1]

    click_hist_df = all_click.groupby('user_id').apply(hist_func).reset_index(drop=True)

    return click_hist_df, click_last_df


# In[22]:


# 获取文章id对应的基本属性,保存成字典的形式,方便后面召回阶段,冷启动阶段直接使用
def get_item_info_dict(item_info_df):
    max_min_scaler = lambda x : (x-np.min(x))/(np.max(x)-np.min(x))
    item_info_df['created_at_ts'] = item_info_df[['created_at_ts']].apply(max_min_scaler)
    
    item_type_dict = dict(zip(item_info_df['click_article_id'], item_info_df['category_id']))
    item_words_dict = dict(zip(item_info_df['click_article_id'], item_info_df['words_count']))
    item_created_time_dict = dict(zip(item_info_df['click_article_id'], item_info_df['created_at_ts']))
    
    return item_type_dict, item_words_dict, item_created_time_dict


# In[23]:


def get_user_hist_item_info_dict(all_click):
    
    # 获取user_id对应的用户历史点击文章类型的集合字典
    user_hist_item_typs = all_click.groupby('user_id')['category_id'].agg(set).reset_index()
    user_hist_item_typs_dict = dict(zip(user_hist_item_typs['user_id'], user_hist_item_typs['category_id']))
    
    # 获取user_id对应的用户点击文章的集合
    user_hist_item_ids_dict = all_click.groupby('user_id')['click_article_id'].agg(set).reset_index()
    user_hist_item_ids_dict = dict(zip(user_hist_item_ids_dict['user_id'], user_hist_item_ids_dict['click_article_id']))
    
    # 获取user_id对应的用户历史点击的文章的平均字数字典
    user_hist_item_words = all_click.groupby('user_id')['words_count'].agg('mean').reset_index()
    user_hist_item_words_dict = dict(zip(user_hist_item_words['user_id'], user_hist_item_words['words_count']))
    
    # 获取user_id对应的用户最后一次点击的文章的创建时间
    all_click_ = all_click.sort_values('click_timestamp')
    user_last_item_created_time = all_click_.groupby('user_id')['created_at_ts'].apply(lambda x: x.iloc[-1]).reset_index()
    
    max_min_scaler = lambda x : (x-np.min(x))/(np.max(x)-np.min(x))
    user_last_item_created_time['created_at_ts'] = user_last_item_created_time[['created_at_ts']].apply(max_min_scaler)
    
    user_last_item_created_time_dict = dict(zip(user_last_item_created_time['user_id'],                                                 user_last_item_created_time['created_at_ts']))
    
    return user_hist_item_typs_dict, user_hist_item_ids_dict, user_hist_item_words_dict, user_last_item_created_time_dict


# In[24]:


# 获取近期点击最多的文章
def get_item_topk_click(click_df, k):
    topk_click = click_df['click_article_id'].value_counts().index[:k]
    return topk_click


# In[28]:


# 获取文章的属性信息,保存成字典的形式方便查询
item_type_dict, item_words_dict, item_created_time_dict = get_item_info_dict(item_info_df)


# In[29]:


# 定义一个多路召回的字典,将各路召回的结果都保存在这个字典当中
user_multi_recall_dict =  {'itemcf_sim_itemcf_recall': {},
                           'embedding_sim_item_recall': {},
                           'youtubednn_recall': {},
                           'youtubednn_usercf_recall': {}, 
                           'cold_start_recall': {}}


# In[ ]:


# 提取最后一次点击作为召回评估,如果不需要做召回评估直接使用全量的训练集进行召回(线下验证模型)
# 如果不是召回评估,直接使用全量数据进行召回,不用将最后一次提取出来
trn_hist_click_df, trn_last_click_df = get_hist_and_last_click(all_click_df)


# In[ ]:


# 依次评估召回的前10, 20, 30, 40, 50个文章中的击中率
def metrics_recall(user_recall_items_dict, trn_last_click_df, topk=5):
    last_click_item_dict = dict(zip(trn_last_click_df['user_id'], trn_last_click_df['click_article_id']))
    user_num = len(user_recall_items_dict)
    
    for k in range(10, topk+1, 10):
        hit_num = 0
        for user, item_list in user_recall_items_dict.items():
            # 获取前k个召回的结果
            tmp_recall_items = [x[0] for x in user_recall_items_dict[user][:k]]
            if last_click_item_dict[user] in set(tmp_recall_items):
                hit_num += 1
        
        hit_rate = round(hit_num * 1.0 / user_num, 5)
        print(' topk: ', k, ' : ', 'hit_num: ', hit_num, 'hit_rate: ', hit_rate, 'user_num : ', user_num)


# In[ ]:


def itemcf_sim(df, item_created_time_dict):
    """
        文章与文章之间的相似性矩阵计算
        :param df: 数据表
        :item_created_time_dict:  文章创建时间的字典
        return : 文章与文章的相似性矩阵
        
        思路: 基于物品的协同过滤(详细请参考上一期推荐系统基础的组队学习) + 关联规则
    """
    
    user_item_time_dict = get_user_item_time(df)
    
    # 计算物品相似度
    i2i_sim = {}
    item_cnt = defaultdict(int)
    for user, item_time_list in tqdm(user_item_time_dict.items()):
        # 在基于商品的协同过滤优化的时候可以考虑时间因素
        for loc1, (i, i_click_time) in enumerate(item_time_list):
            item_cnt[i] += 1
            i2i_sim.setdefault(i, {})
            for loc2, (j, j_click_time) in enumerate(item_time_list):
                if(i == j):
                    continue
                    
                # 考虑文章的正向顺序点击和反向顺序点击    
                loc_alpha = 1.0 if loc2 > loc1 else 0.7
                # 位置信息权重,其中的参数可以调节
                loc_weight = loc_alpha * (0.9 ** (np.abs(loc2 - loc1) - 1))
                # 点击时间权重,其中的参数可以调节
                click_time_weight = np.exp(0.7 ** np.abs(i_click_time - j_click_time))
                # 两篇文章创建时间的权重,其中的参数可以调节
                created_time_weight = np.exp(0.8 ** np.abs(item_created_time_dict[i] - item_created_time_dict[j]))
                i2i_sim[i].setdefault(j, 0)
                # 考虑多种因素的权重计算最终的文章之间的相似度
                i2i_sim[i][j] += loc_weight * click_time_weight * created_time_weight / math.log(len(item_time_list) + 1)
                
    i2i_sim_ = i2i_sim.copy()
    for i, related_items in i2i_sim.items():
        for j, wij in related_items.items():
            i2i_sim_[i][j] = wij / math.sqrt(item_cnt[i] * item_cnt[j])
    
    # 将得到的相似性矩阵保存到本地
    pickle.dump(i2i_sim_, open(save_path + 'itemcf_i2i_sim.pkl', 'wb'))
    
    return i2i_sim_


# In[ ]:


i2i_sim = itemcf_sim(all_click_df, item_created_time_dict)


# In[ ]:


def get_user_activate_degree_dict(all_click_df):
    all_click_df_ = all_click_df.groupby('user_id')['click_article_id'].count().reset_index()
    
    # 用户活跃度归一化
    mm = MinMaxScaler()
    all_click_df_['click_article_id'] = mm.fit_transform(all_click_df_[['click_article_id']])
    user_activate_degree_dict = dict(zip(all_click_df_['user_id'], all_click_df_['click_article_id']))
    
    return user_activate_degree_dict


# In[ ]:


def usercf_sim(all_click_df, user_activate_degree_dict):
    """
        用户相似性矩阵计算
        :param all_click_df: 数据表
        :param user_activate_degree_dict: 用户活跃度的字典
        return 用户相似性矩阵
        
        思路: 基于用户的协同过滤(详细请参考上一期推荐系统基础的组队学习) + 关联规则
    """
    item_user_time_dict = get_item_user_time_dict(all_click_df)
    
    u2u_sim = {}
    user_cnt = defaultdict(int)
    for item, user_time_list in tqdm(item_user_time_dict.items()):
        for u, click_time in user_time_list:
            user_cnt[u] += 1
            u2u_sim.setdefault(u, {})
            for v, click_time in user_time_list:
                u2u_sim[u].setdefault(v, 0)
                if u == v:
                    continue
                # 用户平均活跃度作为活跃度的权重,这里的式子也可以改善
                activate_weight = 100 * 0.5 * (user_activate_degree_dict[u] + user_activate_degree_dict[v])   
                u2u_sim[u][v] += activate_weight / math.log(len(user_time_list) + 1)
    
    u2u_sim_ = u2u_sim.copy()
    for u, related_users in u2u_sim.items():
        for v, wij in related_users.items():
            u2u_sim_[u][v] = wij / math.sqrt(user_cnt[u] * user_cnt[v])
    
    # 将得到的相似性矩阵保存到本地
    pickle.dump(u2u_sim_, open(save_path + 'usercf_u2u_sim.pkl', 'wb'))

    return u2u_sim_


# In[ ]:


# 由于usercf计算时候太耗费内存了,这里就不直接运行了
# 如果是采样的话,是可以运行的
user_activate_degree_dict = get_user_activate_degree_dict(all_click_df)
u2u_sim = usercf_sim(all_click_df, user_activate_degree_dict)


# In[ ]:


# 向量检索相似度计算
# topk指的是每个item, faiss搜索后返回最相似的topk个item
def embdding_sim(click_df, item_emb_df, save_path, topk):
    """
        基于内容的文章embedding相似性矩阵计算
        :param click_df: 数据表
        :param item_emb_df: 文章的embedding
        :param save_path: 保存路径
        :patam topk: 找最相似的topk篇
        return 文章相似性矩阵
        
        思路: 对于每一篇文章, 基于embedding的相似性返回topk个与其最相似的文章, 只不过由于文章数量太多,这里用了faiss进行加速
    """
    
    # 文章索引与文章id的字典映射
    item_idx_2_rawid_dict = dict(zip(item_emb_df.index, item_emb_df['article_id']))
    
    item_emb_cols = [x for x in item_emb_df.columns if 'emb' in x]
    item_emb_np = np.ascontiguousarray(item_emb_df[item_emb_cols].values, dtype=np.float32)
    # 向量进行单位化
    item_emb_np = item_emb_np / np.linalg.norm(item_emb_np, axis=1, keepdims=True)
    
    # 建立faiss索引
    item_index = faiss.IndexFlatIP(item_emb_np.shape[1])
    item_index.add(item_emb_np)
    # 相似度查询,给每个索引位置上的向量返回topk个item以及相似度
    sim, idx = item_index.search(item_emb_np, topk) # 返回的是列表
    
    # 将向量检索的结果保存成原始id的对应关系
    item_sim_dict = collections.defaultdict(dict)
    for target_idx, sim_value_list, rele_idx_list in tqdm(zip(range(len(item_emb_np)), sim, idx)):
        target_raw_id = item_idx_2_rawid_dict[target_idx]
        # 从1开始是为了去掉商品本身, 所以最终获得的相似商品只有topk-1
        for rele_idx, sim_value in zip(rele_idx_list[1:], sim_value_list[1:]): 
            rele_raw_id = item_idx_2_rawid_dict[rele_idx]
            item_sim_dict[target_raw_id][rele_raw_id] = item_sim_dict.get(target_raw_id, {}).get(rele_raw_id, 0) + sim_value
    
    # 保存i2i相似度矩阵
    pickle.dump(item_sim_dict, open(save_path + 'emb_i2i_sim.pkl', 'wb'))   
    
    return item_sim_dict


# In[ ]:


item_emb_df = pd.read_csv(data_path + '/articles_emb.csv')
emb_i2i_sim = embdding_sim(all_click_df, item_emb_df, save_path, topk=10) # topk可以自行设置


# In[ ]:


# 364047it [00:23, 15292.14it/s]


# In[ ]:


# 获取双塔召回时的训练验证数据
# negsample指的是通过滑窗构建样本的时候,负样本的数量
def gen_data_set(data, negsample=0):
    data.sort_values("click_timestamp", inplace=True)
    item_ids = data['click_article_id'].unique()

    train_set = []
    test_set = []
    for reviewerID, hist in tqdm(data.groupby('user_id')):
        pos_list = hist['click_article_id'].tolist()
        
        if negsample > 0:
            candidate_set = list(set(item_ids) - set(pos_list))   # 用户没看过的文章里面选择负样本
            neg_list = np.random.choice(candidate_set,size=len(pos_list)*negsample,replace=True)  # 对于每个正样本,选择n个负样本
            
        # 长度只有一个的时候,需要把这条数据也放到训练集中,不然的话最终学到的embedding就会有缺失
        if len(pos_list) == 1:
            train_set.append((reviewerID, [pos_list[0]], pos_list[0],1,len(pos_list)))
            test_set.append((reviewerID, [pos_list[0]], pos_list[0],1,len(pos_list)))
            
        # 滑窗构造正负样本
        for i in range(1, len(pos_list)):
            hist = pos_list[:i]
            
            if i != len(pos_list) - 1:
                train_set.append((reviewerID, hist[::-1], pos_list[i], 1, len(hist[::-1])))  # 正样本 [user_id, his_item, pos_item, label, len(his_item)]
                for negi in range(negsample):
                    train_set.append((reviewerID, hist[::-1], neg_list[i*negsample+negi], 0,len(hist[::-1]))) # 负样本 [user_id, his_item, neg_item, label, len(his_item)]
            else:
                # 将最长的那一个序列长度作为测试数据
                test_set.append((reviewerID, hist[::-1], pos_list[i],1,len(hist[::-1])))
                
    random.shuffle(train_set)
    random.shuffle(test_set)
    
    return train_set, test_set

# 将输入的数据进行padding,使得序列特征的长度都一致
def gen_model_input(train_set,user_profile,seq_max_len):

    train_uid = np.array([line[0] for line in train_set])
    train_seq = [line[1] for line in train_set]
    train_iid = np.array([line[2] for line in train_set])
    train_label = np.array([line[3] for line in train_set])
    train_hist_len = np.array([line[4] for line in train_set])

    train_seq_pad = pad_sequences(train_seq, maxlen=seq_max_len, padding='post', truncating='post', value=0)
    train_model_input = {"user_id": train_uid, "click_article_id": train_iid, "hist_article_id": train_seq_pad,
                         "hist_len": train_hist_len}

    return train_model_input, train_label


# In[ ]:


def youtubednn_u2i_dict(data, topk=20):    
    sparse_features = ["click_article_id", "user_id"]
    SEQ_LEN = 30 # 用户点击序列的长度,短的填充,长的截断
    
    user_profile_ = data[["user_id"]].drop_duplicates('user_id')
    item_profile_ = data[["click_article_id"]].drop_duplicates('click_article_id')  
    
    # 类别编码
    features = ["click_article_id", "user_id"]
    feature_max_idx = {}
    
    for feature in features:
        lbe = LabelEncoder()
        data[feature] = lbe.fit_transform(data[feature])
        feature_max_idx[feature] = data[feature].max() + 1
    
    # 提取user和item的画像,这里具体选择哪些特征还需要进一步的分析和考虑
    user_profile = data[["user_id"]].drop_duplicates('user_id')
    item_profile = data[["click_article_id"]].drop_duplicates('click_article_id')  
    
    user_index_2_rawid = dict(zip(user_profile['user_id'], user_profile_['user_id']))
    item_index_2_rawid = dict(zip(item_profile['click_article_id'], item_profile_['click_article_id']))
    
    # 划分训练和测试集
    # 由于深度学习需要的数据量通常都是非常大的,所以为了保证召回的效果,往往会通过滑窗的形式扩充训练样本
    train_set, test_set = gen_data_set(data, 0)
    # 整理输入数据,具体的操作可以看上面的函数
    train_model_input, train_label = gen_model_input(train_set, user_profile, SEQ_LEN)
    test_model_input, test_label = gen_model_input(test_set, user_profile, SEQ_LEN)
    
    # 确定Embedding的维度
    embedding_dim = 16
    
    # 将数据整理成模型可以直接输入的形式
    user_feature_columns = [SparseFeat('user_id', feature_max_idx['user_id'], embedding_dim),
                            VarLenSparseFeat(SparseFeat('hist_article_id', feature_max_idx['click_article_id'], embedding_dim,
                                                        embedding_name="click_article_id"), SEQ_LEN, 'mean', 'hist_len'),]
    item_feature_columns = [SparseFeat('click_article_id', feature_max_idx['click_article_id'], embedding_dim)]
    
    # 模型的定义 
    # num_sampled: 负采样时的样本数量
    model = YoutubeDNN(user_feature_columns, item_feature_columns, num_sampled=5, user_dnn_hidden_units=(64, embedding_dim))
    # 模型编译
    model.compile(optimizer="adam", loss=sampledsoftmaxloss)  
    
    # 模型训练,这里可以定义验证集的比例,如果设置为0的话就是全量数据直接进行训练
    history = model.fit(train_model_input, train_label, batch_size=256, epochs=1, verbose=1, validation_split=0.0)
    
    # 训练完模型之后,提取训练的Embedding,包括user端和item端
    test_user_model_input = test_model_input
    all_item_model_input = {"click_article_id": item_profile['click_article_id'].values}

    user_embedding_model = Model(inputs=model.user_input, outputs=model.user_embedding)
    item_embedding_model = Model(inputs=model.item_input, outputs=model.item_embedding)
    
    # 保存当前的item_embedding 和 user_embedding 排序的时候可能能够用到,但是需要注意保存的时候需要和原始的id对应
    user_embs = user_embedding_model.predict(test_user_model_input, batch_size=2 ** 12)
    item_embs = item_embedding_model.predict(all_item_model_input, batch_size=2 ** 12)
    
    # embedding保存之前归一化一下
    user_embs = user_embs / np.linalg.norm(user_embs, axis=1, keepdims=True)
    item_embs = item_embs / np.linalg.norm(item_embs, axis=1, keepdims=True)
    
    # 将Embedding转换成字典的形式方便查询
    raw_user_id_emb_dict = {user_index_2_rawid[k]:                                 v for k, v in zip(user_profile['user_id'], user_embs)}
    raw_item_id_emb_dict = {item_index_2_rawid[k]:                                 v for k, v in zip(item_profile['click_article_id'], item_embs)}
    # 将Embedding保存到本地
    pickle.dump(raw_user_id_emb_dict, open(save_path + 'user_youtube_emb.pkl', 'wb'))
    pickle.dump(raw_item_id_emb_dict, open(save_path + 'item_youtube_emb.pkl', 'wb'))
    
    # faiss紧邻搜索,通过user_embedding 搜索与其相似性最高的topk个item
    index = faiss.IndexFlatIP(embedding_dim)
    # 上面已经进行了归一化,这里可以不进行归一化了
#     faiss.normalize_L2(user_embs)
#     faiss.normalize_L2(item_embs)
    index.add(item_embs) # 将item向量构建索引
    sim, idx = index.search(np.ascontiguousarray(user_embs), topk) # 通过user去查询最相似的topk个item
    
    user_recall_items_dict = collections.defaultdict(dict)
    for target_idx, sim_value_list, rele_idx_list in tqdm(zip(test_user_model_input['user_id'], sim, idx)):
        target_raw_id = user_index_2_rawid[target_idx]
        # 从1开始是为了去掉商品本身, 所以最终获得的相似商品只有topk-1
        for rele_idx, sim_value in zip(rele_idx_list[1:], sim_value_list[1:]): 
            rele_raw_id = item_index_2_rawid[rele_idx]
            user_recall_items_dict[target_raw_id][rele_raw_id] = user_recall_items_dict.get(target_raw_id, {})                                                                    .get(rele_raw_id, 0) + sim_value
            
    user_recall_items_dict = {k: sorted(v.items(), key=lambda x: x[1], reverse=True) for k, v in user_recall_items_dict.items()}
    # 将召回的结果进行排序
    
    # 保存召回的结果
    # 这里是直接通过向量的方式得到了召回结果,相比于上面的召回方法,上面的只是得到了i2i及u2u的相似性矩阵,还需要进行协同过滤召回才能得到召回结果
    # 可以直接对这个召回结果进行评估,为了方便可以统一写一个评估函数对所有的召回结果进行评估
    pickle.dump(user_recall_items_dict, open(save_path + 'youtube_u2i_dict.pkl', 'wb'))
    return user_recall_items_dict


# In[ ]:


# 由于这里需要做召回评估,所以讲训练集中的最后一次点击都提取了出来
if not metric_recall:
    user_multi_recall_dict['youtubednn_recall'] = youtubednn_u2i_dict(all_click_df, topk=20)
else:
    trn_hist_click_df, trn_last_click_df = get_hist_and_last_click(all_click_df)
    user_multi_recall_dict['youtubednn_recall'] = youtubednn_u2i_dict(trn_hist_click_df, topk=20)
    # 召回效果评估
    metrics_recall(user_multi_recall_dict['youtubednn_recall'], trn_last_click_df, topk=20)


# In[ ]:


# 基于商品的召回i2i
def item_based_recommend(user_id, user_item_time_dict, i2i_sim, sim_item_topk, recall_item_num, item_topk_click, item_created_time_dict, emb_i2i_sim):
    """
        基于文章协同过滤的召回
        :param user_id: 用户id
        :param user_item_time_dict: 字典, 根据点击时间获取用户的点击文章序列   {user1: [(item1, time1), (item2, time2)..]...}
        :param i2i_sim: 字典,文章相似性矩阵
        :param sim_item_topk: 整数, 选择与当前文章最相似的前k篇文章
        :param recall_item_num: 整数, 最后的召回文章数量
        :param item_topk_click: 列表,点击次数最多的文章列表,用户召回补全
        :param emb_i2i_sim: 字典基于内容embedding算的文章相似矩阵
        
        return: 召回的文章列表 [(item1, score1), (item2, score2)...]
        
    """
    # 获取用户历史交互的文章
    user_hist_items = user_item_time_dict[user_id]
    user_hist_items_ = {user_id for user_id, _ in user_hist_items }

    item_rank = {}
    for loc, (i, click_time) in enumerate(user_hist_items):
        for j, wij in sorted(i2i_sim[i].items(), key=lambda x: x[1], reverse=True)[:sim_item_topk]:
            if j in user_hist_items_:
                continue
            
            # 文章创建时间差权重
            created_time_weight = np.exp(0.8 ** np.abs(item_created_time_dict[i] - item_created_time_dict[j]))
            # 相似文章和历史点击文章序列中历史文章所在的位置权重
            loc_weight = (0.9 ** (len(user_hist_items) - loc))
            
            content_weight = 1.0
            if emb_i2i_sim.get(i, {}).get(j, None) is not None:
                content_weight += emb_i2i_sim[i][j]
            if emb_i2i_sim.get(j, {}).get(i, None) is not None:
                content_weight += emb_i2i_sim[j][i]
                
            item_rank.setdefault(j, 0)
            item_rank[j] += created_time_weight * loc_weight * content_weight * wij
    
    # 不足10个,用热门商品补全
    if len(item_rank) < recall_item_num:
        for i, item in enumerate(item_topk_click):
            if item in item_rank.items(): # 填充的item应该不在原来的列表中
                continue
            item_rank[item] = - i - 100 # 随便给个负数就行
            if len(item_rank) == recall_item_num:
                break
    
    item_rank = sorted(item_rank.items(), key=lambda x: x[1], reverse=True)[:recall_item_num]
        
    return item_rank


# In[ ]:


# 先进行itemcf召回, 为了召回评估,所以提取最后一次点击

if metric_recall:
    trn_hist_click_df, trn_last_click_df = get_hist_and_last_click(all_click_df)
else:
    trn_hist_click_df = all_click_df

user_recall_items_dict = collections.defaultdict(dict)
user_item_time_dict = get_user_item_time(trn_hist_click_df)

i2i_sim = pickle.load(open(save_path + 'itemcf_i2i_sim.pkl', 'rb'))
emb_i2i_sim = pickle.load(open(save_path + 'emb_i2i_sim.pkl', 'rb'))

sim_item_topk = 20
recall_item_num = 10
item_topk_click = get_item_topk_click(trn_hist_click_df, k=50)

for user in tqdm(trn_hist_click_df['user_id'].unique()):
    user_recall_items_dict[user] = item_based_recommend(user, user_item_time_dict,                                                         i2i_sim, sim_item_topk, recall_item_num,                                                         item_topk_click, item_created_time_dict, emb_i2i_sim)

user_multi_recall_dict['itemcf_sim_itemcf_recall'] = user_recall_items_dict
pickle.dump(user_multi_recall_dict['itemcf_sim_itemcf_recall'], open(save_path + 'itemcf_recall_dict.pkl', 'wb'))

if metric_recall:
    # 召回效果评估
    metrics_recall(user_multi_recall_dict['itemcf_sim_itemcf_recall'], trn_last_click_df, topk=recall_item_num)


# In[ ]:


# 这里是为了召回评估,所以提取最后一次点击
if metric_recall:
    trn_hist_click_df, trn_last_click_df = get_hist_and_last_click(all_click_df)
else:
    trn_hist_click_df = all_click_df

user_recall_items_dict = collections.defaultdict(dict)
user_item_time_dict = get_user_item_time(trn_hist_click_df)
i2i_sim = pickle.load(open(save_path + 'emb_i2i_sim.pkl','rb'))

sim_item_topk = 20
recall_item_num = 10

item_topk_click = get_item_topk_click(trn_hist_click_df, k=50)

for user in tqdm(trn_hist_click_df['user_id'].unique()):
    user_recall_items_dict[user] = item_based_recommend(user, user_item_time_dict, i2i_sim, sim_item_topk, 
                                                        recall_item_num, item_topk_click, item_created_time_dict, emb_i2i_sim)
    
user_multi_recall_dict['embedding_sim_item_recall'] = user_recall_items_dict
pickle.dump(user_multi_recall_dict['embedding_sim_item_recall'], open(save_path + 'embedding_sim_item_recall.pkl', 'wb'))

if metric_recall:
    # 召回效果评估
    metrics_recall(user_multi_recall_dict['embedding_sim_item_recall'], trn_last_click_df, topk=recall_item_num)


# In[ ]:


# 基于用户的召回 u2u2i
def user_based_recommend(user_id, user_item_time_dict, u2u_sim, sim_user_topk, recall_item_num, 
                         item_topk_click, item_created_time_dict, emb_i2i_sim):
    """
        基于文章协同过滤的召回
        :param user_id: 用户id
        :param user_item_time_dict: 字典, 根据点击时间获取用户的点击文章序列   {user1: [(item1, time1), (item2, time2)..]...}
        :param u2u_sim: 字典,文章相似性矩阵
        :param sim_user_topk: 整数, 选择与当前用户最相似的前k个用户
        :param recall_item_num: 整数, 最后的召回文章数量
        :param item_topk_click: 列表,点击次数最多的文章列表,用户召回补全
        :param item_created_time_dict: 文章创建时间列表
        :param emb_i2i_sim: 字典基于内容embedding算的文章相似矩阵
        
        return: 召回的文章列表 [(item1, score1), (item2, score2)...]
    """
    # 历史交互
    user_item_time_list = user_item_time_dict[user_id]    # {item1: time1, item2: time2...}
    user_hist_items = set([i for i, t in user_item_time_list])   # 存在一个用户与某篇文章的多次交互, 这里得去重
    
    items_rank = {}
    for sim_u, wuv in sorted(u2u_sim[user_id].items(), key=lambda x: x[1], reverse=True)[:sim_user_topk]:
        for i, click_time in user_item_time_dict[sim_u]:
            if i in user_hist_items:
                continue
            items_rank.setdefault(i, 0)
            
            loc_weight = 1.0
            content_weight = 1.0
            created_time_weight = 1.0
            
            # 当前文章与该用户看的历史文章进行一个权重交互
            for loc, (j, click_time) in enumerate(user_item_time_list):
                # 点击时的相对位置权重
                loc_weight += 0.9 ** (len(user_item_time_list) - loc)
                # 内容相似性权重
                if emb_i2i_sim.get(i, {}).get(j, None) is not None:
                    content_weight += emb_i2i_sim[i][j]
                if emb_i2i_sim.get(j, {}).get(i, None) is not None:
                    content_weight += emb_i2i_sim[j][i]
                
                # 创建时间差权重
                created_time_weight += np.exp(0.8 * np.abs(item_created_time_dict[i] - item_created_time_dict[j]))
                
            items_rank[i] += loc_weight * content_weight * created_time_weight * wuv
        
    # 热度补全
    if len(items_rank) < recall_item_num:
        for i, item in enumerate(item_topk_click):
            if item in items_rank.items(): # 填充的item应该不在原来的列表中
                continue
            items_rank[item] = - i - 100 # 随便给个复数就行
            if len(items_rank) == recall_item_num:
                break
        
    items_rank = sorted(items_rank.items(), key=lambda x: x[1], reverse=True)[:recall_item_num]    
    
    return items_rank


# In[ ]:


# 这里是为了召回评估,所以提取最后一次点击
# 由于usercf中计算user之间的相似度的过程太费内存了,全量数据这里就没有跑,跑了一个采样之后的数据
if metric_recall:
    trn_hist_click_df, trn_last_click_df = get_hist_and_last_click(all_click_df)
else:
    trn_hist_click_df = all_click_df
    
user_recall_items_dict = collections.defaultdict(dict)
user_item_time_dict = get_user_item_time(trn_hist_click_df)

u2u_sim = pickle.load(open(save_path + 'usercf_u2u_sim.pkl', 'rb'))

sim_user_topk = 20
recall_item_num = 10
item_topk_click = get_item_topk_click(trn_hist_click_df, k=50)

for user in tqdm(trn_hist_click_df['user_id'].unique()):
    user_recall_items_dict[user] = user_based_recommend(user, user_item_time_dict, u2u_sim, sim_user_topk,                                                         recall_item_num, item_topk_click, item_created_time_dict, emb_i2i_sim)    

pickle.dump(user_recall_items_dict, open(save_path + 'usercf_u2u2i_recall.pkl', 'wb'))

if metric_recall:
    # 召回效果评估
    metrics_recall(user_recall_items_dict, trn_last_click_df, topk=recall_item_num)


# In[ ]:


# 使用Embedding的方式获取u2u的相似性矩阵
# topk指的是每个user, faiss搜索后返回最相似的topk个user
def u2u_embdding_sim(click_df, user_emb_dict, save_path, topk):
    
    user_list = []
    user_emb_list = []
    for user_id, user_emb in user_emb_dict.items():
        user_list.append(user_id)
        user_emb_list.append(user_emb)
        
    user_index_2_rawid_dict = {k: v for k, v in zip(range(len(user_list)), user_list)}    
    
    user_emb_np = np.array(user_emb_list, dtype=np.float32)
    
    # 建立faiss索引
    user_index = faiss.IndexFlatIP(user_emb_np.shape[1])
    user_index.add(user_emb_np)
    # 相似度查询,给每个索引位置上的向量返回topk个item以及相似度
    sim, idx = user_index.search(user_emb_np, topk) # 返回的是列表
   
    # 将向量检索的结果保存成原始id的对应关系
    user_sim_dict = collections.defaultdict(dict)
    for target_idx, sim_value_list, rele_idx_list in tqdm(zip(range(len(user_emb_np)), sim, idx)):
        target_raw_id = user_index_2_rawid_dict[target_idx]
        # 从1开始是为了去掉商品本身, 所以最终获得的相似商品只有topk-1
        for rele_idx, sim_value in zip(rele_idx_list[1:], sim_value_list[1:]): 
            rele_raw_id = user_index_2_rawid_dict[rele_idx]
            user_sim_dict[target_raw_id][rele_raw_id] = user_sim_dict.get(target_raw_id, {}).get(rele_raw_id, 0) + sim_value
    
    # 保存i2i相似度矩阵
    pickle.dump(user_sim_dict, open(save_path + 'youtube_u2u_sim.pkl', 'wb'))   
    return user_sim_dict


# In[ ]:


# 读取YoutubeDNN过程中产生的user embedding, 然后使用faiss计算用户之间的相似度
# 这里需要注意,这里得到的user embedding其实并不是很好,因为YoutubeDNN中使用的是用户点击序列来训练的user embedding,
# 如果序列普遍都比较短的话,其实效果并不是很好
user_emb_dict = pickle.load(open(save_path + 'user_youtube_emb.pkl', 'rb'))
u2u_sim = u2u_embdding_sim(all_click_df, user_emb_dict, save_path, topk=10)


# In[ ]:


# 使用召回评估函数验证当前召回方式的效果
if metric_recall:
    trn_hist_click_df, trn_last_click_df = get_hist_and_last_click(all_click_df)
else:
    trn_hist_click_df = all_click_df

user_recall_items_dict = collections.defaultdict(dict)
user_item_time_dict = get_user_item_time(trn_hist_click_df)
u2u_sim = pickle.load(open(save_path + 'youtube_u2u_sim.pkl', 'rb'))

sim_user_topk = 20
recall_item_num = 10

item_topk_click = get_item_topk_click(trn_hist_click_df, k=50)
for user in tqdm(trn_hist_click_df['user_id'].unique()):
    user_recall_items_dict[user] = user_based_recommend(user, user_item_time_dict, u2u_sim, sim_user_topk,                                                         recall_item_num, item_topk_click, item_created_time_dict, emb_i2i_sim)
    
user_multi_recall_dict['youtubednn_usercf_recall'] = user_recall_items_dict
pickle.dump(user_multi_recall_dict['youtubednn_usercf_recall'], open(save_path + 'youtubednn_usercf_recall.pkl', 'wb'))

if metric_recall:
    # 召回效果评估
    metrics_recall(user_multi_recall_dict['youtubednn_usercf_recall'], trn_last_click_df, topk=recall_item_num)


# In[ ]:


# 先进行itemcf召回,这里不需要做召回评估,这里只是一种策略
trn_hist_click_df = all_click_df

user_recall_items_dict = collections.defaultdict(dict)
user_item_time_dict = get_user_item_time(trn_hist_click_df)
i2i_sim = pickle.load(open(save_path + 'emb_i2i_sim.pkl','rb'))

sim_item_topk = 150
recall_item_num = 100 # 稍微召回多一点文章,便于后续的规则筛选

item_topk_click = get_item_topk_click(trn_hist_click_df, k=50)
for user in tqdm(trn_hist_click_df['user_id'].unique()):
    user_recall_items_dict[user] = item_based_recommend(user, user_item_time_dict, i2i_sim, sim_item_topk, 
                                                        recall_item_num, item_topk_click,item_created_time_dict, emb_i2i_sim)
pickle.dump(user_recall_items_dict, open(save_path + 'cold_start_items_raw_dict.pkl', 'wb'))


# In[ ]:


# 基于规则进行文章过滤
# 保留文章主题与用户历史浏览主题相似的文章
# 保留文章字数与用户历史浏览文章字数相差不大的文章
# 保留最后一次点击当天的文章
# 按照相似度返回最终的结果

def get_click_article_ids_set(all_click_df):
    return set(all_click_df.click_article_id.values)

def cold_start_items(user_recall_items_dict, user_hist_item_typs_dict, user_hist_item_words_dict,                      user_last_item_created_time_dict, item_type_dict, item_words_dict, 
                     item_created_time_dict, click_article_ids_set, recall_item_num):
    """
        冷启动的情况下召回一些文章
        :param user_recall_items_dict: 基于内容embedding相似性召回来的很多文章, 字典, {user1: [item1, item2, ..], }
        :param user_hist_item_typs_dict: 字典, 用户点击的文章的主题映射
        :param user_hist_item_words_dict: 字典, 用户点击的历史文章的字数映射
        :param user_last_item_created_time_idct: 字典,用户点击的历史文章创建时间映射
        :param item_tpye_idct: 字典,文章主题映射
        :param item_words_dict: 字典,文章字数映射
        :param item_created_time_dict: 字典, 文章创建时间映射
        :param click_article_ids_set: 集合,用户点击过得文章, 也就是日志里面出现过的文章
        :param recall_item_num: 召回文章的数量, 这个指的是没有出现在日志里面的文章数量
    """
    
    cold_start_user_items_dict = {}
    for user, item_list in tqdm(user_recall_items_dict.items()):
        cold_start_user_items_dict.setdefault(user, [])
        for item, score in item_list:
            # 获取历史文章信息
            hist_item_type_set = user_hist_item_typs_dict[user]
            hist_mean_words = user_hist_item_words_dict[user]
            hist_last_item_created_time = user_last_item_created_time_dict[user]
            hist_last_item_created_time = datetime.fromtimestamp(hist_last_item_created_time)
            
            # 获取当前召回文章的信息
            curr_item_type = item_type_dict[item]
            curr_item_words = item_words_dict[item]
            curr_item_created_time = item_created_time_dict[item]
            curr_item_created_time = datetime.fromtimestamp(curr_item_created_time)

            # 首先,文章不能出现在用户的历史点击中, 然后根据文章主题,文章单词数,文章创建时间进行筛选
            if curr_item_type not in hist_item_type_set or                 item in click_article_ids_set or                 abs(curr_item_words - hist_mean_words) > 200 or                 abs((curr_item_created_time - hist_last_item_created_time).days) > 90: 
                continue
                
            cold_start_user_items_dict[user].append((item, score))      # {user1: [(item1, score1), (item2, score2)..]...}
    
    # 需要控制一下冷启动召回的数量
    cold_start_user_items_dict = {k: sorted(v, key=lambda x:x[1], reverse=True)[:recall_item_num]                                   for k, v in cold_start_user_items_dict.items()}
    
    pickle.dump(cold_start_user_items_dict, open(save_path + 'cold_start_user_items_dict.pkl', 'wb'))
    
    return cold_start_user_items_dict 


# In[ ]:


all_click_df_ = all_click_df.copy()
all_click_df_ = all_click_df_.merge(item_info_df, how='left', on='click_article_id')
user_hist_item_typs_dict, user_hist_item_ids_dict, user_hist_item_words_dict, user_last_item_created_time_dict = get_user_hist_item_info_dict(all_click_df_)
click_article_ids_set = get_click_article_ids_set(all_click_df)
# 需要注意的是
# 这里使用了很多规则来筛选冷启动的文章,所以前面再召回的阶段就应该尽可能的多召回一些文章,否则很容易被删掉
cold_start_user_items_dict = cold_start_items(user_recall_items_dict, user_hist_item_typs_dict, user_hist_item_words_dict,                                               user_last_item_created_time_dict, item_type_dict, item_words_dict,                                               item_created_time_dict, click_article_ids_set, recall_item_num)

user_multi_recall_dict['cold_start_recall'] = cold_start_user_items_dict


# In[ ]:


def combine_recall_results(user_multi_recall_dict, weight_dict=None, topk=25):
    final_recall_items_dict = {}
    
    # 对每一种召回结果按照用户进行归一化,方便后面多种召回结果,相同用户的物品之间权重相加
    def norm_user_recall_items_sim(sorted_item_list):
        # 如果冷启动中没有文章或者只有一篇文章,直接返回,出现这种情况的原因可能是冷启动召回的文章数量太少了,
        # 基于规则筛选之后就没有文章了, 这里还可以做一些其他的策略性的筛选
        if len(sorted_item_list) < 2:
            return sorted_item_list
        
        min_sim = sorted_item_list[-1][1]
        max_sim = sorted_item_list[0][1]
        
        norm_sorted_item_list = []
        for item, score in sorted_item_list:
            if max_sim > 0:
                norm_score = 1.0 * (score - min_sim) / (max_sim - min_sim) if max_sim > min_sim else 1.0
            else:
                norm_score = 0.0
            norm_sorted_item_list.append((item, norm_score))
            
        return norm_sorted_item_list
    
    print('多路召回合并...')
    for method, user_recall_items in tqdm(user_multi_recall_dict.items()):
        print(method + '...')
        # 在计算最终召回结果的时候,也可以为每一种召回结果设置一个权重
        if weight_dict == None:
            recall_method_weight = 1
        else:
            recall_method_weight = weight_dict[method]
        
        for user_id, sorted_item_list in user_recall_items.items(): # 进行归一化
            user_recall_items[user_id] = norm_user_recall_items_sim(sorted_item_list)
        
        for user_id, sorted_item_list in user_recall_items.items():
            # print('user_id')
            final_recall_items_dict.setdefault(user_id, {})
            for item, score in sorted_item_list:
                final_recall_items_dict[user_id].setdefault(item, 0)
                final_recall_items_dict[user_id][item] += recall_method_weight * score  
    
    final_recall_items_dict_rank = {}
    # 多路召回时也可以控制最终的召回数量
    for user, recall_item_dict in final_recall_items_dict.items():
        final_recall_items_dict_rank[user] = sorted(recall_item_dict.items(), key=lambda x: x[1], reverse=True)[:topk]

    # 将多路召回后的最终结果字典保存到本地
    pickle.dump(final_recall_items_dict, open(os.path.join(save_path, 'final_recall_items_dict.pkl'),'wb'))

    return final_recall_items_dict_rank


# In[ ]:


# 这里直接对多路召回的权重给了一个相同的值,其实可以根据前面召回的情况来调整参数的值
weight_dict = {'itemcf_sim_itemcf_recall': 1.0,
               'embedding_sim_item_recall': 1.0,
               'youtubednn_recall': 1.0,
               'youtubednn_usercf_recall': 1.0, 
               'cold_start_recall': 1.0}


# In[ ]:


# 最终合并之后每个用户召回150个商品进行排序
final_recall_items_dict_rank = combine_recall_results(user_multi_recall_dict, weight_dict, topk=150)


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
#include "FreeRTOS.h" #include "task.h" #include "main.h" #include "cmsis_os.h" #include "stdio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN Variables */ QueueHandle_t xQueue; #define dui_len 5 #define content_len 10 /* USER CODE END Variables */ osThreadId defaultTaskHandle; osThreadId myTask02Handle; osThreadId myTask03Handle; /* Private function prototypes -----------------------------------------------*/ /* USER CODE BEGIN FunctionPrototypes */ /* USER CODE END FunctionPrototypes */ void StartDefaultTask(void const * argument); void StartTask02(void const * argument); void StartTask03(void const * argument); void MX_FREERTOS_Init(void); /* (MISRA C 2004 rule 8.1) */ /* GetIdleTaskMemory prototype (linked to static allocation support) */ void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ); /* USER CODE BEGIN GET_IDLE_TASK_MEMORY */ static StaticTask_t xIdleTaskTCBBuffer; static StackType_t xIdleStack[configMINIMAL_STACK_SIZE]; void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ) { *ppxIdleTaskTCBBuffer = &xIdleTaskTCBBuffer; *ppxIdleTaskStackBuffer = &xIdleStack[0]; *pulIdleTaskStackSize = configMINIMAL_STACK_SIZE;请写出详细的注释
06-01
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值