数据分析
http://datawhale.club/t/topic/197/1
数据分析的价值主要在于熟悉了解整个数据集的基本情况包括每个文件里有哪些数据,具体的文件中的每个字段表示什么实际含义,以及数据集中特征之间的相关性,在推荐场景下主要就是分析用户本身的基本属性,文章基本属性,以及用户和文章交互的一些分布,这些都有利于后面的召回策略的选择,以及特征工程。
建议:当特征工程和模型调参已经很难继续上分了,可以回来在重新从新的角度去分析这些数据,或许可以找到上分的灵感
# coding: utf-8
# In[3]:
# 导入相关包
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
plt.rc('font', family='SimHei', size=13)
import os,gc,re,warnings,sys
warnings.filterwarnings("ignore")
# In[11]:
path = 'C:/Users/LENOVO/Desktop/datawhaleRES/'
#####train
trn_click = pd.read_csv(path+'train_click_log.csv')
item_df = pd.read_csv(path+'articles.csv')
item_df = item_df.rename(columns={'article_id': 'click_article_id'}) #重命名,方便后续match
item_emb_df = pd.read_csv(path+'articles_emb.csv')
#####test
tst_click = pd.read_csv(path+'testA_click_log.csv')
item_df
# In[5]:
# 对每个用户的点击时间戳进行排序
trn_click['rank'] = trn_click.groupby(['user_id'])['click_timestamp'].rank(ascending=False).astype(int)
tst_click['rank'] = tst_click.groupby(['user_id'])['click_timestamp'].rank(ascending=False).astype(int)
# In[10]:
#计算用户点击文章的次数,并添加新的一列count
trn_click['click_cnts'] = trn_click.groupby(['user_id'])['click_timestamp'].transform('count')
tst_click['click_cnts'] = tst_click.groupby(['user_id'])['click_timestamp'].transform('count')
trn_click
# In[12]:
trn_click = trn_click.merge(item_df, how='left', on=['click_article_id'])
trn_click.head()
# In[13]:
#用户点击日志信息
trn_click.info()
# In[14]:
trn_click.describe()
# In[15]:
#训练集中的用户数量为20w
trn_click.user_id.nunique()
# In[18]:
trn_click.groupby('user_id')['click_article_id'].count().min() # 训练集里面每个用户至少点击了两篇文章
# In[19]:
plt.figure()
plt.figure(figsize=(15, 20))
i = 1
for col in ['click_article_id', 'click_timestamp', 'click_environment', 'click_deviceGroup', 'click_os', 'click_country',
'click_region', 'click_referrer_type', 'rank', 'click_cnts']:
plot_envs = plt.subplot(5, 2, i)
i += 1
v = trn_click[col].value_counts().reset_index()[:10]
fig = sns.barplot(x=v['index'], y=v[col])
for item in fig.get_xticklabels():
item.set_rotation(90)
plt.title(col)
plt.tight_layout()
plt.show()
# In[20]:
tst_click = tst_click.merge(item_df, how='left', on=['click_article_id'])
tst_click.head()
# In[21]:
tst_click.describe()
# In[22]:
#测试集中的用户数量为5w
tst_click.user_id.nunique()
# In[23]:
tst_click.groupby('user_id')['click_article_id'].count().min() # 注意测试集里面有只点击过一次文章的用户
# In[24]:
#新闻文章数据集浏览
item_df.head().append(item_df.tail())
# In[25]:
item_df['words_count'].value_counts()
# In[26]:
print(item_df['category_id'].nunique()) # 461个文章主题
item_df['category_id'].hist()
# In[27]:
item_df.shape # 364047篇文章
# In[28]:
item_emb_df.head()
# In[29]:
item_emb_df.shape
# In[30]:
#####merge
user_click_merge = trn_click.append(tst_click)
# In[31]:
#用户重复点击
user_click_count = user_click_merge.groupby(['user_id', 'click_article_id'])['click_timestamp'].agg({'count'}).reset_index()
user_click_count[:10]
# In[32]:
user_click_count[user_click_count['count']>7]
# In[33]:
user_click_count['count'].unique()
# In[34]:
#用户点击新闻次数
user_click_count.loc[:,'count'].value_counts()
# In[35]:
def plot_envs(df, cols, r, c):
plt.figure()
plt.figure(figsize=(10, 5))
i = 1
for col in cols:
plt.subplot(r, c, i)
i += 1
v = df[col].value_counts().reset_index()
fig = sns.barplot(x=v['index'], y=v[col])
for item in fig.get_xticklabels():
item.set_rotation(90)
plt.title(col)
plt.tight_layout()
plt.show()
# In[37]:
# 分析用户点击环境变化是否明显,这里随机采样10个用户分析这些用户的点击环境分布
sample_user_ids = np.random.choice(tst_click['user_id'].unique(), size=5, replace=False)
sample_users = user_click_merge[user_click_merge['user_id'].isin(sample_user_ids)]
cols = ['click_environment','click_deviceGroup', 'click_os', 'click_country', 'click_region','click_referrer_type']
for _, user_df in sample_users.groupby('user_id'):
plot_envs(user_df, cols, 2, 3)
# In[38]:
user_click_item_count = sorted(user_click_merge.groupby('user_id')['click_article_id'].count(), reverse=True)
plt.plot(user_click_item_count)
# In[39]:
#点击次数在前50的用户
plt.plot(user_click_item_count[:50])
# In[40]:
#点击次数排名在[25000:50000]之间
plt.plot(user_click_item_count[25000:50000])
# In[41]:
item_click_count = sorted(user_click_merge.groupby('click_article_id')['user_id'].count(), reverse=True)
# In[42]:
plt.plot(item_click_count)
# In[43]:
plt.plot(item_click_count[:100])
# In[44]:
plt.plot(item_click_count[:20])
# In[45]:
plt.plot(item_click_count[3500:])
# In[46]:
tmp = user_click_merge.sort_values('click_timestamp')
tmp['next_item'] = tmp.groupby(['user_id'])['click_article_id'].transform(lambda x:x.shift(-1))
union_item = tmp.groupby(['click_article_id','next_item'])['click_timestamp'].agg({'count'}).reset_index().sort_values('count', ascending=False)
union_item[['count']].describe()
# In[47]:
#画个图直观地看一看
x = union_item['click_article_id']
y = union_item['count']
plt.scatter(x, y)
# In[48]:
plt.plot(union_item['count'].values[40000:])
# In[49]:
#不同类型的新闻出现的次数
plt.plot(user_click_merge['category_id'].value_counts().values)
# In[50]:
#出现次数比较少的新闻类型, 有些新闻类型,基本上就出现过几次
plt.plot(user_click_merge['category_id'].value_counts().values[150:])
# In[51]:
#新闻字数的描述性统计
user_click_merge['words_count'].describe()
# In[52]:
plt.plot(user_click_merge['words_count'].values)
# In[53]:
plt.plot(sorted(user_click_merge.groupby('user_id')['category_id'].nunique(), reverse=True))
# In[54]:
user_click_merge.groupby('user_id')['category_id'].nunique().reset_index().describe()
# In[55]:
plt.plot(sorted(user_click_merge.groupby('user_id')['words_count'].mean(), reverse=True))
# In[56]:
#挑出大多数人的区间仔细看看
plt.plot(sorted(user_click_merge.groupby('user_id')['words_count'].mean(), reverse=True)[1000:45000])
# In[57]:
#更加详细的参数
user_click_merge.groupby('user_id')['words_count'].mean().reset_index().describe()
# In[58]:
#为了更好的可视化,这里把时间进行归一化操作
from sklearn.preprocessing import MinMaxScaler
mm = MinMaxScaler()
user_click_merge['click_timestamp'] = mm.fit_transform(user_click_merge[['click_timestamp']])
user_click_merge['created_at_ts'] = mm.fit_transform(user_click_merge[['created_at_ts']])
user_click_merge = user_click_merge.sort_values('click_timestamp')
# In[59]:
user_click_merge.head()
# In[60]:
def mean_diff_time_func(df, col):
df = pd.DataFrame(df, columns={col})
df['time_shift1'] = df[col].shift(1).fillna(0)
df['diff_time'] = abs(df[col] - df['time_shift1'])
return df['diff_time'].mean()
# In[61]:
# 点击时间差的平均值
mean_diff_click_time = user_click_merge.groupby('user_id')['click_timestamp', 'created_at_ts'].apply(lambda x: mean_diff_time_func(x, 'click_timestamp'))
# In[62]:
plt.plot(sorted(mean_diff_click_time.values, reverse=True))
# In[ ]:
# 前后点击文章的创建时间差的平均值
mean_diff_created_time = user_click_merge.groupby('user_id')['click_timestamp', 'created_at_ts'].apply(lambda x: mean_diff_time_func(x, 'created_at_ts'))
# In[ ]:
plt.plot(sorted(mean_diff_created_time.values, reverse=True))
# In[ ]:
# 用户前后点击文章的相似性分布
item_idx_2_rawid_dict = dict(zip(item_emb_df['article_id'], item_emb_df.index))
# In[ ]:
del item_emb_df['article_id']
# In[ ]:
item_emb_np = np.ascontiguousarray(item_emb_df.values, dtype=np.float32)
# In[ ]:
# 随机选择5个用户,查看这些用户前后查看文章的相似性
sub_user_ids = np.random.choice(user_click_merge.user_id.unique(), size=15, replace=False)
sub_user_info = user_click_merge[user_click_merge['user_id'].isin(sub_user_ids)]
sub_user_info.head()
# In[ ]:
def get_item_sim_list(df):
sim_list = []
item_list = df['click_article_id'].values
for i in range(0, len(item_list)-1):
emb1 = item_emb_np[item_idx_2_rawid_dict[item_list[i]]]
emb2 = item_emb_np[item_idx_2_rawid_dict[item_list[i+1]]]
sim_list.append(np.dot(emb1,emb2)/(np.linalg.norm(emb1)*(np.linalg.norm(emb2))))
sim_list.append(0)
return sim_list
# In[ ]:
for _, user_df in sub_user_info.groupby('user_id'):
item_sim_list = get_item_sim_list(user_df)
plt.plot(item_sim_list)
总结
通过数据分析的过程, 我们目前可以得到以下几点重要的信息, 这个对于我们进行后面的特征制作和分析非常有帮助:
训练集和测试集的用户id没有重复,也就是测试集里面的用户模型是没有见过的
训练集中用户最少的点击文章数是2, 而测试集里面用户最少的点击文章数是1
用户对于文章存在重复点击的情况, 但这个都存在于训练集里面
同一用户的点击环境存在不唯一的情况,后面做这部分特征的时候可以采用统计特征
用户点击文章的次数有很大的区分度,后面可以根据这个制作衡量用户活跃度的特征
文章被用户点击的次数也有很大的区分度,后面可以根据这个制作衡量文章热度的特征
用户看的新闻,相关性是比较强的,所以往往我们判断用户是否对某篇文章感兴趣的时候, 在很大程度上会和他历史点击过的文章有关
用户点击的文章字数有比较大的区别, 这个可以反映用户对于文章字数的区别
用户点击过的文章主题也有很大的区别, 这个可以反映用户的主题偏好
不同用户点击文章的时间差也会有所区别, 这个可以反映用户对于文章时效性的偏好
所以根据上面的一些分析,可以更好的帮助我们后面做好特征工程, 充分挖掘数据的隐含信息。