【超详细教程(附源码)】用FPGA加速卷积神经网络CNN运算

【超详细教程(附源码)】用FPGA加速卷积神经网络CNN运算

原创教程,转载请联系作者并注明出处:https://github.com/WalkerLau

源码地址:https://github.com/WalkerLau/Accelerating-CNN-with-FPGA

最近发现很多小伙伴都想用FPGA加速卷积神经网络运算,而恰好我刚做完的本科毕设就是这个题目,所以就有了写这个教程的想法,希望能给还没开始的小伙伴一点思路与帮助,更希望大神们给出一些进一步优化的建议。

最终加速性能

话不多说,先看最终的加速效果。本加速系统仅加速卷积层的运算,下图展示了仅采用CPU采用CPU+FPGA加速系统来处理VIPLFaceNet人脸识别算法时,计算7个卷积层所耗费的时钟数的对比。由图可见,相比于4核ARM A53处理器,本加速系统最终可以对VIPLFaceNet的大部分卷积层实现45~75倍的运算加速。

项目描述及特点

本加速系统采用中科院计算所的SeetaFace人脸识别项目进行加速功能的验证,所用的卷积神经网络模型是VIPLFaceNet。本项目的设计工具是Xilinx SDSOC,个人认为这是个人或小团队进行FPGA嵌入式开发最高效的工具,因此不会涉及HDL的编写。本加速系统具有以下特点:

  • 容易移植:本项目采用Xilinx SDSOC进行设计,可以直接把C/C++代码综合成FPGA电路,只需修改FPGA加速模块的代码中卷积层结构相关的参数就可以移植到别的卷积神经网络算法中。

  • 高性能,采用了如下几种加速策略,具体原理见最后一节:

    • 独创的输入体复用架构

    • 数据的低精度转换

    • 16通道并行计算单元及加法树结构

    • 流水线策略

    • 片上存储BRAM的partition及卷积层间共享

    • 多层卷积的加速实施策略

你需要准备什么?

  • 硬件:

    • Xilinx Ultrascale+ MPSOC ZCU102 (也可以用ZCU104或其他合适的Xilinx嵌入式开发板)
  • 软件:

    • Ubuntu 16.04 操作系统(用于安装和运行SDSOC,由于后面需要编译板载Linux系统,必须使用Linux主机不能用Windows,以下所有开发都在Linux环境中进行)

    • Xilinx SDSOC 2018.2 开发套件(戳这里的SDSOC安装及配置教程,请务必跟教程走)

    • Xilinx reVISION platform(由于SeetaFace的小部分代码用到了OpenCV,这里安装reVISION是为了使用里面的xfopencv库,上一项的SDSOC安装教程详细讲了reVISION的安装与使用方法)

    • [可选,建议安装] CodeBlocks(用于对算法程序进行离板调试)

    • [可选,建议安装] 安装OpenCV 2.4.13.6(SeetaFace的小部分代码用到了OpenCV,用于对算法程序进行离板调试)

  • 一些基本知识:

  • 45
    点赞
  • 467
    收藏
    觉得还不错? 一键收藏
  • 25
    评论
FPGA(Field Programmable Gate Array)是一种可编程的逻辑器件,可以用于加速卷积神经网络CNN)的源码。在传统的软件实现中,CNN的计算是由通用CPU完成的,但是由于CNN计算复杂度高,处理大量的图像数据需要较长的时间。而使用FPGA加速CNN可以提高计算效率。 首先,我们可以将CNN的计算任务通过编程的方式映射到FPGA上。FPGA提供了大量的可编程逻辑单元和存储器单元,可以根据CNN的计算需求进行合理的设计和配置。可以使用硬件描述语言(HDL)如Verilog或VHDL来编写FPGA的逻辑设计,描述网络层的计算过程。 然后,FPGA可以并行地执行卷积运算CNN中的卷积操作是非常耗时的,通过在FPGA上进行并行计算,可以大大加快卷积运算的速度。FPGA可以同时处理多个卷积核与输入特征图之间的计算,提高了计算效率。 此外,FPGA还可以用于实现高速的存储器访问。CNN中的卷积运算需要大量的权重参数和中间结果的存储,而FPGA可以配置高速缓存和存储单元,提供快速的数据传输和访问速度。这样可以减少内存访问的延迟,进一步提高计算效率。 最后,FPGA还可以通过定制化设计来减少能耗。因为FPGA上的逻辑和存储单元是可编程的,可以根据CNN的计算需求来进行优化设计,避免不必要的计算和数据传输,降低功耗消耗,提高计算效率。 综上所述,使用FPGA加速卷积神经网络CNN源码可以提高计算效率。通过并行计算、高速存储器访问和定制化设计,FPGA可以加速CNN的计算过程,减少计算时间和能耗,提高性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值