POJ3641-Pseudoprime numbers

8 篇文章 0 订阅
2 篇文章 0 订阅

题目给出两个数p, a,要求根据费马小定理检验p是不是个伪素数。

用快速幂来做。

另外,不能直接将a^p == a(mod p)化成a^p-1 == 1(mod p)来做,因为转换的条件是a不是p的倍数。(贡献一wa)

#include <cstdio>

bool isprime(int n) {
    for (int i = 2; i * i <= n; i++) {
        if (n % i == 0) {
            return false;
        }
    }
    return true;
}

long long mod_pow(long long x, long long n, long long mod) {
    long long res = 1;
    while (n > 0) {
        if (n & 1) {
            res = res * x % mod;
        }
        x = x * x % mod;
        n >>= 1;
    }
    return res;
}

int main(int argc, char const *argv[]) {
    int p, a;
    while (scanf("%d%d", &p, &a) == 2 && p && a) {
        if (!isprime(p) && mod_pow(a, p, p) == a % p) {
            puts("yes");
        } else {
            puts("no");
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值