/**
* 基于Twitter的Snowflake算法实现分布式高效有序ID生产黑科技(sequence)——升级版Snowflake
*
* <br>
* SnowFlake的结构如下(每部分用-分开):<br>
* <br>
* 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 <br>
* <br>
* 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br>
* <br>
* 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)
* 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下START_TIME属性)。41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>
* <br>
* 10位的数据机器位,可以部署在1024个节点,包括5位dataCenterId和5位workerId<br>
* <br>
* 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br>
* <br>
* <br>
* 加起来刚好64位,为一个Long型。<br>
* SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。
* <p>
* <p>
* 特性:
* 1.支持自定义允许时间回拨的范围<p>
* 2.解决跨毫秒起始值每次为0开始的情况(避免末尾必定为偶数,而不便于取余使用问题)<p>
* 3.解决高并发场景中获取时间戳性能问题<p>
* 4.支撑根据IP末尾数据作为workerId
* 5.时间回拨方案思考:1024个节点中分配10个点作为时间回拨序号(连续10次时间回拨的概率较小)
*
* @author weizhouck
* @version 1.0.0
* @date 2020/9/7 16:35
*/
@Slf4j
public final class Sequence {
/**
* 时间起始标记点,作为基准,一般取系统的最近时间(一旦确定不能变动)
*/
private final long twepoch = 1588834974657L;
/**
* 机器标识位数
*/
private final long workerIdBits = 5L;
private final long datacenterIdBits = 5L;
private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
/**
* 毫秒内自增位
*/
private final long sequenceBits = 12L;
private final long workerIdShift = sequenceBits;
private final long datacenterIdShift = sequenceBits + workerIdBits;
/**
* 时间戳左移动位
*/
private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
private final long sequenceMask = -1L ^ (-1L << sequenceBits);
private final long workerId;
/**
* 数据标识 ID 部分
*/
private final long datacenterId;
/**
* 并发控制
*/
private long sequence = 0L;
/**
* 上次生产 ID 时间戳
*/
private long lastTimestamp = -1L;
public Sequence() {
this.datacenterId = getDatacenterId(maxDatacenterId);
this.workerId = getMaxWorkerId(datacenterId, maxWorkerId);
}
/**
* 有参构造器
*
* @param workerId 工作机器 ID
* @param datacenterId 序列号
*/
public Sequence(long workerId, long datacenterId) {
Assert.isFalse(workerId > maxWorkerId || workerId < 0,
String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
Assert.isFalse(datacenterId > maxDatacenterId || datacenterId < 0,
String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
this.workerId = workerId;
this.datacenterId = datacenterId;
}
/**
* 获取 maxWorkerId
*/
protected static long getMaxWorkerId(long datacenterId, long maxWorkerId) {
StringBuilder mpid = new StringBuilder();
mpid.append(datacenterId);
String name = ManagementFactory.getRuntimeMXBean().getName();
if (StringUtils.isNotBlank(name)) {
/*
* GET jvmPid
*/
mpid.append(name.split(StringPool.AT)[0]);
}
/*
* MAC + PID 的 hashcode 获取16个低位
*/
return (mpid.toString().hashCode() & 0xffff) % (maxWorkerId + 1);
}
/**
* 数据标识id部分
*/
protected static long getDatacenterId(long maxDatacenterId) {
long id = 0L;
try {
InetAddress ip = InetAddress.getLocalHost();
NetworkInterface network = NetworkInterface.getByInetAddress(ip);
if (network == null) {
id = 1L;
} else {
byte[] mac = network.getHardwareAddress();
if (null != mac) {
id = ((0x000000FF & (long) mac[mac.length - 1]) | (0x0000FF00 & (((long) mac[mac.length - 2]) << 8))) >> 6;
id = id % (maxDatacenterId + 1);
}
}
} catch (Exception e) {
log.warn(" getDatacenterId: " + e.getMessage());
}
return id;
}
/**
* 获取下一个 ID
*
* @return 下一个 ID
*/
public synchronized long nextId() {
long timestamp = timeGen();
//闰秒
if (timestamp < lastTimestamp) {
long offset = lastTimestamp - timestamp;
if (offset <= 5) {
try {
wait(offset << 1);
timestamp = timeGen();
if (timestamp < lastTimestamp) {
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", offset));
}
} catch (Exception e) {
throw new RuntimeException(e);
}
} else {
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", offset));
}
}
if (lastTimestamp == timestamp) {
// 相同毫秒内,序列号自增
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
// 同一毫秒的序列数已经达到最大
timestamp = tilNextMillis(lastTimestamp);
}
} else {
// 不同毫秒内,序列号置为 1 - 3 随机数
sequence = ThreadLocalRandom.current().nextLong(1, 3);
}
lastTimestamp = timestamp;
// 时间戳部分 | 数据中心部分 | 机器标识部分 | 序列号部分
return ((timestamp - twepoch) << timestampLeftShift)
| (datacenterId << datacenterIdShift)
| (workerId << workerIdShift)
| sequence;
}
protected long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}
protected long timeGen() {
return SystemClock.now();
}
}