T1-J 舞会匹配

这篇博客介绍了如何解决给定男女亲密度的舞会搭档问题,通过二分图最大匹配的模板——匈牙利算法。算法的核心在于遍历并尝试重新匹配,以找到最多数量的搭档组合。博客提供了洛谷模板代码,并指出算法的时间复杂度。适用于解决匹配问题和优化配对场景。
摘要由CSDN通过智能技术生成

题目描述:

学校有n位男生n位女生,给定彼此的亲密度,亲密度大于m的男女可组成舞会的搭档。

求最多的搭档数。

题目解析:

二分图最大匹配的模板题。

在此介绍匈牙利算法:每一个左部点u ,然后枚举该左部点连出的边,对于一个出点 v,如果它没有被先前的左部点匹配,那么直接将 u 匹配 v,否则尝试让 v 的“原配”左部点去匹配其他右部点,如果“原配”匹配到了其他点,那么将 u 匹配 v,否则 u 失配。

尝试让“原配”寻找其他匹配的过程可以递归进行。需要注意的是,在一轮递归中,每个右部点只能被访问一次。

算法的时间复杂度为 O(n×e+n),其中 n是点个数,e 是图的边数。

洛谷模板代码如下。对于本题,只需要加两重循环判断亲密度与m的大小,再加入该边即可。

#include <cstdio>
#include <vector>

const int maxn = 1005;

int n, m, t;
int mch[maxn], vistime[maxn];

std::vector<int> e[maxn];

bool dfs(const int u, const int tag);

int main() {
  scanf("%d %d %d", &n, &m, &t);
  for (int u, v; t; --t) {
    scanf("%d %d", &u, &v);
    e[u].push_back(v);
  }
  int ans = 0;
  for (int i = 1; i <= n; ++i) if (dfs(i, i)) {
    ++ans;
  }
  printf("%d\n", ans);
}

bool dfs(const int u, const int tag) {
  if (vistime[u] == tag) return false;
  vistime[u] = tag;
  for (auto v : e[u]) if ((mch[v] == 0) || dfs(mch[v], tag)) {
    mch[v] = u;
    return true;
  }
  return false;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值