题目描述:
学校有n位男生n位女生,给定彼此的亲密度,亲密度大于m的男女可组成舞会的搭档。
求最多的搭档数。
题目解析:
二分图最大匹配的模板题。
在此介绍匈牙利算法:每一个左部点u ,然后枚举该左部点连出的边,对于一个出点 v,如果它没有被先前的左部点匹配,那么直接将 u 匹配 v,否则尝试让 v 的“原配”左部点去匹配其他右部点,如果“原配”匹配到了其他点,那么将 u 匹配 v,否则 u 失配。
尝试让“原配”寻找其他匹配的过程可以递归进行。需要注意的是,在一轮递归中,每个右部点只能被访问一次。
算法的时间复杂度为 O(n×e+n),其中 n是点个数,e 是图的边数。
洛谷模板代码如下。对于本题,只需要加两重循环判断亲密度与m的大小,再加入该边即可。
#include <cstdio>
#include <vector>
const int maxn = 1005;
int n, m, t;
int mch[maxn], vistime[maxn];
std::vector<int> e[maxn];
bool dfs(const int u, const int tag);
int main() {
scanf("%d %d %d", &n, &m, &t);
for (int u, v; t; --t) {
scanf("%d %d", &u, &v);
e[u].push_back(v);
}
int ans = 0;
for (int i = 1; i <= n; ++i) if (dfs(i, i)) {
++ans;
}
printf("%d\n", ans);
}
bool dfs(const int u, const int tag) {
if (vistime[u] == tag) return false;
vistime[u] = tag;
for (auto v : e[u]) if ((mch[v] == 0) || dfs(mch[v], tag)) {
mch[v] = u;
return true;
}
return false;
}