随机过程基础(3)---随机过程的统计描述、平稳随机过程

随机过程的概率分布
一维连续概率分布: F x ( x , t ) = P { X ( t ) ≤ x } F_x(x,t)=P\{X(t)\le x\} Fx(x,t)=P{X(t)x}对x偏导,就是X(t)的一维概率密度。显然,这两个二元函数将随机变量的分布\密度铺到整个时间轴上,一个时间对应一个变量分布情况。因此只考虑某个t的结论全部和随机变量结论相同,例如 ∫ − ∞ ∞ f ( x , t ) d x = 1 \int_{-\infty}^{\infty}f(x,t)dx=1 f(x,t)dx=1blablabla。
一维离散概率分布同理。 F x ( x , n ) = P { X ( n ) ≤ x } F_x(x,n)=P\{X(n)\le x\} Fx(x,n)=P{X(n)x}

一般,若X(t)是Y的函数,还是可以 f X ( x , t ) = f Y ( y ) ∣ J ∣ f_X(x,t)=f_Y(y)|J| fX(x,t)=fY(y)J其中y替换成含有x的式子(如果不严格平稳,里面一般也含着t)。

二维连续概率分布同理。 F X ( x 1 , x 2 , t 1 , t 2 ) = P { X ( t 1 ) ≤ x 1 , X ( t 2 ) ≤ x 2 } F_X(x_1,x_2,t_1,t_2)=P\{X(t_1)\le x_1,X(t_2)\le x_2\} FX(x1,x2,t1,t2)=P{X(t1)x1,X(t2)x2}二维连续概率密度同理。 f X ( x 1 , x 2 , t 1 , t 2 ) = ∂ 2 F X ( x 1 , x 2 , t 1 , t 2 ) ∂ x 1 ∂ x 2 f_X(x_1,x_2,t_1,t_2)=\frac{\partial^2F_X(x_1,x_2,t_1,t_2)}{\partial x_1\partial x_2} fX(x1,x2,t1,t2)=x1x22FX(x1,x2,t1,t2)初步理解成从时间轴上揪出来两个点,对应出来两个随机变量后套上概率论公式就完了。
二维离散概率分布、离散概率密度同理,只不过将t换成n。
多维概率密度同理。完全描述某过程统计特性应该使N趋于无穷大,工程应用中二维概率分布就够了(计算功率谱密度等只需二维)。
随机过程的数字特征
均值
对于连续系统,写作 m X ( t ) = E ( X ( t ) ) = ∫ − ∞ ∞ x f X ( x , t ) d x m_X(t)=E(X(t))=\int_{-\infty}^{\infty}xf_X(x,t)dx mX(t)=E(X(t))=xfX(x,t)dx同理,把t换成n,离散系统写作 m X ( n ) = E ( X ( n ) ) = ∫ − ∞ ∞ x f X ( x , n ) d x m_X(n)=E(X(n))=\int_{-\infty}^{\infty}xf_X(x,n)dx mX(n)=E(X(n))=xfX(x,n)dx时间不连续,但状态仍(一般)是连续的,所以上式仍用积分号。每个t(或n)(一般)对应一个均值,故 m X ( t ) , m X ( n ) m_X(t),m_X(n) mX(t),mX(n)是函数。
方差
对于随机过程,定义式 σ X 2 ( t ) = E { [ X ( t ) − m X ( t ) ] 2 } = E [ X 2 ( t ) ] − m X 2 ( t ) \sigma_X^2(t)=E\{[X(t)-m_X(t)]^2\}=E[X^2(t)]-m_X^2(t) σX2(t)=E{[X(t)mX(t)]2}=E[X2(t)]mX2(t)随机序列,定义式 σ X 2 ( n ) = E { [ X ( n ) − m X ( n ) ] 2 } \sigma_X^2(n)=E\{[X(n)-m_X(n)]^2\} σX2(n)=E{[X(n)mX(n)]2} E [ X 2 ( t ) ] = σ X 2 ( t ) + m X 2 ( t ) E[X^2(t)]=\sigma_X^2(t)+m_X^2(t) E[X2(t)]=σX2(t)+mX2(t)它可以衡量总平均功率。
相关函数和协方差函数
(自)相关函数 R X ( t 1 , t 2 ) = E [ X ( t 1 ) X ( t 2 ) ] = ∫ − ∞ ∞ ∫ − ∞ ∞ x 1 x 2 f ( x 1 , x 2 , t 1 , t 2 ) d x 1 d x 2 R_X(t_1,t_2)=E[X(t_1)X(t_2)]=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}x_1x_2f(x_1,x_2,t_1,t_2)dx_1dx_2 RX(t1,t2)=E[X(t1)X(t2)]=x1x2f(x1,x2,t1,t2)dx1dx2取正值表明(多数)样本函数与时间呈正相关,反之则多呈负相关(一般情况下)。绝对值越大相关性越强,选取的两个t间隔越远自相关函数绝对值越小。t1=t2时,相关性最强。(大小要相对来看,并且由于随机性,上述结论都不是绝对的)还有 K X ( t , t ) = E [ X 2 ( t ) ] = σ X 2 ( t ) + m X 2 ( t ) K_X(t,t)=E[X^2(t)]=\sigma_X^2(t)+m_X^2(t) KX(t,t)=E[X2(t)]=σX2(t)+mX2(t)协方差函数 K X ( t 1 , t 2 ) = E { ] X ( t 1 ) − m X ( t 1 ) ] [ X ( t 2 ) − m X ( t 2 ) ] } K_X(t_1,t_2)=E\{]X(t_1)-m_X(t_1)][X(t_2)-m_X(t_2)]\} KX(t1,t2)=E{]X(t1)mX(t1)][X(t2)mX(t2)]}显然(类似随机变量协方差的展开、消去中间两项过程) K X ( t 1 , t 2 ) = R X ( t 1 , t 2 ) − m X ( t 1 ) m X ( t 2 ) K_X(t_1,t_2)=R_X(t_1,t_2)-m_X(t_1)m_X(t_2) KX(t1,t2)=RX(t1,t2)mX(t1)mX(t2)类似地,协方差函数为零,则两个时刻对应的随机变量不相关;自相关函数为零,则对应t1t2两个状态正交;联合概率密度可以直接乘开,则对应状态相互独立。
将t改写成n,就有离散时间随机过程的自相关函数和协方差函数。
离散状态随机过程的自相关函数写作 R X ( t 1 , t 2 ) = E [ X ( t 2 ) X ( t 2 ) ] = ∑ i = 1 N ∑ i = 1 N x i ( t 1 ) x j ( t 2 ) p i j ( t 1 , t 2 ) R_X(t_1,t_2)=E[X(t_2)X(t_2)]=\sum_{i=1}^N\sum_{i=1}^Nx_i(t_1)x_j(t_2)p_{ij}(t_1,t_2) RX(t1,t2)=E[X(t2)X(t2)]=i=1Ni=1Nxi(t1)xj(t2)pij(t1,t2)pij表示在t1时刻取到第i个状态、t2时刻取到第j个状态的概率。协方差函数 K X ( t 1 , t 2 ) = E { ] X ( t 1 ) − m X ( t 1 ) ] [ X ( t 2 ) − m X ( t 2 ) ] } K_X(t_1,t_2)=E\{]X(t_1)-m_X(t_1)][X(t_2)-m_X(t_2)]\} KX(t1,t2)=E{]X(t1)mX(t1)][X(t2)mX(t2)]} = ∑ i = 1 N ∑ i = 1 N [ x i ( t 1 ) − m X ( t 1 ) ] [ x j ( t 2 ) − m X ( t 2 ) ] p i j ( t 1 , t 2 ) =\sum_{i=1}^N\sum_{i=1}^N[x_i(t_1)-m_X(t_1)][x_j(t_2)-m_X(t_2)]p_{ij}(t_1,t_2) =i=1Ni=1N[xi(t1)mX(t1)][xj(t2)mX(t2)]pij(t1,t2)这里简单整个例子,验证书中计算的随机相位信号的统计特性。 y = c o s ( ω 0 t + k ) , ω 0 = π 2 y=cos(\omega_0 t+k),\omega_0=\frac{\pi}{2} y=cos(ω0t+k),ω0=2π相位k是0到2pi服从均匀分布的随机变量。
以下程序中,int求k从0到2pi的Y的定积分。
求均值,计算式 m X ( t ) = E ( X ( t ) ) = ∫ − ∞ ∞ x f X ( x , t ) d x m_X(t)=E(X(t))=\int_{-\infty}^{\infty}xf_X(x,t)dx mX(t)=E(X(t))=xfX(x,t)dx这里fx=1/2pi

syms t k;
A=1;w=pi/2;
fx=1/(2*pi)
y=fx*A*sin(w*t+k);
res=int(y, k, 0, 2*pi);
ezplot(t,res)

在这里插入图片描述
求自相关函数,得 R X ( t 1 , t 2 ) = 1 2 c o s π 2 ( t 1 − t 2 ) R_X(t_1,t_2)=\frac{1}{2}cos\frac{\pi}{2}(t_1-t_2) RX(t1,t2)=21cos2π(t1t2)

syms t1 t2 k
y1=sin(w*t1+k); 
y2=sin(w*t2+k);
y=y1*y2;
R=1/(2*pi)*int(y,k,0,2*pi); 
ezmesh(R,100)

在这里插入图片描述
方差 σ X 2 ( n ) = R X ( n , n ) − m X 2 ( n ) = 1 2 \sigma_X^2(n)=R_X(n,n)-m_X^2(n)=\frac{1}{2} σX2(n)=RX(n,n)mX2(n)=21

syms t k
y=sin(w*t+k);
h=1/(2*pi)*int(y,k,0,2*pi);
m=(y-h)^2;
D=1/(2*pi)*int(m,k,0,2*pi);
ezplot(D);

在这里插入图片描述
平稳随机过程
严格平稳随机过程任意N维分布不随时间起点的不同变化(shift-invariance)。 f X ( x 1 , x 2 , . . . , x n , t 1 , . . . , t n ) = f X ( x 1 , . . . , x n , t 1 + c , t 2 + c , . . . , t n + c ) f_X(x_1,x_2,...,x_n,t_1,...,t_n)=f_X(x_1,...,x_n,t_1+c,t_2+c,...,t_n+c) fX(x1,x2,...,xn,t1,...,tn)=fX(x1,...,xn,t1+c,t2+c,...,tn+c)特别地,一维概率密度与时间无关 f X ( x , t ) = f X ( x ) f_X(x,t)=f_X(x) fX(x,t)=fX(x)二维概率密度只与时间间隔有关(思考为什么还与间隔有关 f X ( x 1 , x 2 , t 1 , t 2 ) = f X ( x 1 , x 2 , τ ) , τ = t 1 − t 2 f_X(x_1,x_2,t_1,t_2)=f_X(x_1,x_2,\tau),\tau=t_1-t_2 fX(x1,x2,t1,t2)=fX(x1,x2,τ),τ=t1t2反过来,广义平稳随机过程指满足 m X ( t ) = 常 数 m_X(t)=常数 mX(t)= R X ( t 1 , t 2 ) = R X ( τ ) R_X(t_1,t_2)=R_X(\tau) RX(t1,t2)=RX(τ)的随机过程。例如刚才画的随机相位信号均值为0,相关函数只与时间差有关,是平稳的。由上立即有 R X ( t , t ) R_X(t,t) RX(t,t)恒定,即方差恒定。下图最左侧是时域分析中(广义)平稳随机过程的某次试验图,分别与对应随机过程的方差、均值(在不同时间点)不恒定的右两图对比。
在这里插入图片描述
平稳随机过程不意味随机变量值/随机变量函数/随机变量的分布形式不随时间变化,而意味着随机变量随时间分布变化的某种方式没有变化。
在这里插入图片描述

循环平稳(Cyclostationarity)指 F X ( x 1 , . . . , x N , t 1 + M T , . . . , t N + M T ) = F X ( x 1 , . . . , x N , t 1 , . . . , t N ) F_X(x_1,...,x_N,t_1+MT,...,t_N+MT)=F_X(x_1,...,x_N,t_1,...,t_N) FX(x1,...,xN,t1+MT,...,tN+MT)=FX(x1,...,xN,t1,...,tN)当白噪声信号受到正弦信号调制产生的波形满足循环平稳。写一个简单的对白噪声用正弦波幅度调制,(代码与本主题无关不贴了)运行效果如图:
在这里插入图片描述
可以认为生成的𝑥(𝑡)=𝑛(𝑡)sin2𝜔𝑡是一个循环平稳过程。
设X(t)严格循环平稳,而随机变量θ在区间(0,T)上均匀分布,θ与X(t)统计独立,则Y(t)=X(t-θ)是严格平稳随机过程,N维分布函数 F X ( x 1 , . . . , x N − 1 , t 1 , . . . , t N ) = 1 T ∫ 0 T F X ( x 1 , . . , x N , t 1 − α , . . . , t N − α ) d α F_X(x_1,...,x_{N-1},t_1,...,t_N)=\frac{1}{T}\int_0^TF_X(x_1,..,x_N,t_1-\alpha,...,t_N-\alpha)d\alpha FX(x1,...,xN1,t1,...,tN)=T10TFX(x1,..,xN,t1α,...,tNα)dα
渐进平稳
写作 lim ⁡ c → ∞ f X ( x 1 , x 2 , . . . , x N , t 1 + c , . . . , t N + c ) \lim_{c\to\infty}f_X(x_1,x_2,...,x_N,t_1+c,...,t_N+c) climfX(x1,x2,...,xN,t1+c,...,tN+c)存在且与c无关。
k阶严格平稳
当时移不变性仅对前k阶有效,就称为k阶严格平稳。高阶平稳能推出低阶平稳,反之不然。例子比较难举,例如找一个一阶严格平稳的随机过程,其协方差矩阵是[X(t),X(t+1),X(t+2)] [ σ 2 a b a σ 2 c b c σ 2 ] \left[\begin{array}{cc} \sigma^2 & a & b \\ a & \sigma^2 & c \\ b & c& \sigma^2 \end{array}\right] σ2abaσ2cbcσ2由于E[X(t)X(t+1)]=a,时移后得到E[X(t+1)X(t+2)]=c而不是a,所以它不是二阶严格平稳的。类似地还可以举出其他例子。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值