随机过程的概率分布
一维连续概率分布:
F
x
(
x
,
t
)
=
P
{
X
(
t
)
≤
x
}
F_x(x,t)=P\{X(t)\le x\}
Fx(x,t)=P{X(t)≤x}对x偏导,就是X(t)的一维概率密度。显然,这两个二元函数将随机变量的分布\密度铺到整个时间轴上,一个时间对应一个变量分布情况。因此只考虑某个t的结论全部和随机变量结论相同,例如
∫
−
∞
∞
f
(
x
,
t
)
d
x
=
1
\int_{-\infty}^{\infty}f(x,t)dx=1
∫−∞∞f(x,t)dx=1blablabla。
一维离散概率分布同理。
F
x
(
x
,
n
)
=
P
{
X
(
n
)
≤
x
}
F_x(x,n)=P\{X(n)\le x\}
Fx(x,n)=P{X(n)≤x}
一般,若X(t)是Y的函数,还是可以 f X ( x , t ) = f Y ( y ) ∣ J ∣ f_X(x,t)=f_Y(y)|J| fX(x,t)=fY(y)∣J∣其中y替换成含有x的式子(如果不严格平稳,里面一般也含着t)。
二维连续概率分布同理。
F
X
(
x
1
,
x
2
,
t
1
,
t
2
)
=
P
{
X
(
t
1
)
≤
x
1
,
X
(
t
2
)
≤
x
2
}
F_X(x_1,x_2,t_1,t_2)=P\{X(t_1)\le x_1,X(t_2)\le x_2\}
FX(x1,x2,t1,t2)=P{X(t1)≤x1,X(t2)≤x2}二维连续概率密度同理。
f
X
(
x
1
,
x
2
,
t
1
,
t
2
)
=
∂
2
F
X
(
x
1
,
x
2
,
t
1
,
t
2
)
∂
x
1
∂
x
2
f_X(x_1,x_2,t_1,t_2)=\frac{\partial^2F_X(x_1,x_2,t_1,t_2)}{\partial x_1\partial x_2}
fX(x1,x2,t1,t2)=∂x1∂x2∂2FX(x1,x2,t1,t2)初步理解成从时间轴上揪出来两个点,对应出来两个随机变量后套上概率论公式就完了。
二维离散概率分布、离散概率密度同理,只不过将t换成n。
多维概率密度同理。完全描述某过程统计特性应该使N趋于无穷大,工程应用中二维概率分布就够了(计算功率谱密度等只需二维)。
随机过程的数字特征
均值
对于连续系统,写作
m
X
(
t
)
=
E
(
X
(
t
)
)
=
∫
−
∞
∞
x
f
X
(
x
,
t
)
d
x
m_X(t)=E(X(t))=\int_{-\infty}^{\infty}xf_X(x,t)dx
mX(t)=E(X(t))=∫−∞∞xfX(x,t)dx同理,把t换成n,离散系统写作
m
X
(
n
)
=
E
(
X
(
n
)
)
=
∫
−
∞
∞
x
f
X
(
x
,
n
)
d
x
m_X(n)=E(X(n))=\int_{-\infty}^{\infty}xf_X(x,n)dx
mX(n)=E(X(n))=∫−∞∞xfX(x,n)dx时间不连续,但状态仍(一般)是连续的,所以上式仍用积分号。每个t(或n)(一般)对应一个均值,故
m
X
(
t
)
,
m
X
(
n
)
m_X(t),m_X(n)
mX(t),mX(n)是函数。
方差
对于随机过程,定义式
σ
X
2
(
t
)
=
E
{
[
X
(
t
)
−
m
X
(
t
)
]
2
}
=
E
[
X
2
(
t
)
]
−
m
X
2
(
t
)
\sigma_X^2(t)=E\{[X(t)-m_X(t)]^2\}=E[X^2(t)]-m_X^2(t)
σX2(t)=E{[X(t)−mX(t)]2}=E[X2(t)]−mX2(t)随机序列,定义式
σ
X
2
(
n
)
=
E
{
[
X
(
n
)
−
m
X
(
n
)
]
2
}
\sigma_X^2(n)=E\{[X(n)-m_X(n)]^2\}
σX2(n)=E{[X(n)−mX(n)]2}有
E
[
X
2
(
t
)
]
=
σ
X
2
(
t
)
+
m
X
2
(
t
)
E[X^2(t)]=\sigma_X^2(t)+m_X^2(t)
E[X2(t)]=σX2(t)+mX2(t)它可以衡量总平均功率。
相关函数和协方差函数
(自)相关函数
R
X
(
t
1
,
t
2
)
=
E
[
X
(
t
1
)
X
(
t
2
)
]
=
∫
−
∞
∞
∫
−
∞
∞
x
1
x
2
f
(
x
1
,
x
2
,
t
1
,
t
2
)
d
x
1
d
x
2
R_X(t_1,t_2)=E[X(t_1)X(t_2)]=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}x_1x_2f(x_1,x_2,t_1,t_2)dx_1dx_2
RX(t1,t2)=E[X(t1)X(t2)]=∫−∞∞∫−∞∞x1x2f(x1,x2,t1,t2)dx1dx2取正值表明(多数)样本函数与时间呈正相关,反之则多呈负相关(一般情况下)。绝对值越大相关性越强,选取的两个t间隔越远自相关函数绝对值越小。t1=t2时,相关性最强。(大小要相对来看,并且由于随机性,上述结论都不是绝对的)还有
K
X
(
t
,
t
)
=
E
[
X
2
(
t
)
]
=
σ
X
2
(
t
)
+
m
X
2
(
t
)
K_X(t,t)=E[X^2(t)]=\sigma_X^2(t)+m_X^2(t)
KX(t,t)=E[X2(t)]=σX2(t)+mX2(t)协方差函数
K
X
(
t
1
,
t
2
)
=
E
{
]
X
(
t
1
)
−
m
X
(
t
1
)
]
[
X
(
t
2
)
−
m
X
(
t
2
)
]
}
K_X(t_1,t_2)=E\{]X(t_1)-m_X(t_1)][X(t_2)-m_X(t_2)]\}
KX(t1,t2)=E{]X(t1)−mX(t1)][X(t2)−mX(t2)]}显然(类似随机变量协方差的展开、消去中间两项过程)
K
X
(
t
1
,
t
2
)
=
R
X
(
t
1
,
t
2
)
−
m
X
(
t
1
)
m
X
(
t
2
)
K_X(t_1,t_2)=R_X(t_1,t_2)-m_X(t_1)m_X(t_2)
KX(t1,t2)=RX(t1,t2)−mX(t1)mX(t2)类似地,协方差函数为零,则两个时刻对应的随机变量不相关;自相关函数为零,则对应t1t2两个状态正交;联合概率密度可以直接乘开,则对应状态相互独立。
将t改写成n,就有离散时间随机过程的自相关函数和协方差函数。
离散状态随机过程的自相关函数写作
R
X
(
t
1
,
t
2
)
=
E
[
X
(
t
2
)
X
(
t
2
)
]
=
∑
i
=
1
N
∑
i
=
1
N
x
i
(
t
1
)
x
j
(
t
2
)
p
i
j
(
t
1
,
t
2
)
R_X(t_1,t_2)=E[X(t_2)X(t_2)]=\sum_{i=1}^N\sum_{i=1}^Nx_i(t_1)x_j(t_2)p_{ij}(t_1,t_2)
RX(t1,t2)=E[X(t2)X(t2)]=i=1∑Ni=1∑Nxi(t1)xj(t2)pij(t1,t2)pij表示在t1时刻取到第i个状态、t2时刻取到第j个状态的概率。协方差函数
K
X
(
t
1
,
t
2
)
=
E
{
]
X
(
t
1
)
−
m
X
(
t
1
)
]
[
X
(
t
2
)
−
m
X
(
t
2
)
]
}
K_X(t_1,t_2)=E\{]X(t_1)-m_X(t_1)][X(t_2)-m_X(t_2)]\}
KX(t1,t2)=E{]X(t1)−mX(t1)][X(t2)−mX(t2)]}
=
∑
i
=
1
N
∑
i
=
1
N
[
x
i
(
t
1
)
−
m
X
(
t
1
)
]
[
x
j
(
t
2
)
−
m
X
(
t
2
)
]
p
i
j
(
t
1
,
t
2
)
=\sum_{i=1}^N\sum_{i=1}^N[x_i(t_1)-m_X(t_1)][x_j(t_2)-m_X(t_2)]p_{ij}(t_1,t_2)
=i=1∑Ni=1∑N[xi(t1)−mX(t1)][xj(t2)−mX(t2)]pij(t1,t2)这里简单整个例子,验证书中计算的随机相位信号的统计特性。
y
=
c
o
s
(
ω
0
t
+
k
)
,
ω
0
=
π
2
y=cos(\omega_0 t+k),\omega_0=\frac{\pi}{2}
y=cos(ω0t+k),ω0=2π相位k是0到2pi服从均匀分布的随机变量。
以下程序中,int求k从0到2pi的Y的定积分。
求均值,计算式
m
X
(
t
)
=
E
(
X
(
t
)
)
=
∫
−
∞
∞
x
f
X
(
x
,
t
)
d
x
m_X(t)=E(X(t))=\int_{-\infty}^{\infty}xf_X(x,t)dx
mX(t)=E(X(t))=∫−∞∞xfX(x,t)dx这里fx=1/2pi
syms t k;
A=1;w=pi/2;
fx=1/(2*pi)
y=fx*A*sin(w*t+k);
res=int(y, k, 0, 2*pi);
ezplot(t,res)
求自相关函数,得
R
X
(
t
1
,
t
2
)
=
1
2
c
o
s
π
2
(
t
1
−
t
2
)
R_X(t_1,t_2)=\frac{1}{2}cos\frac{\pi}{2}(t_1-t_2)
RX(t1,t2)=21cos2π(t1−t2)
syms t1 t2 k
y1=sin(w*t1+k);
y2=sin(w*t2+k);
y=y1*y2;
R=1/(2*pi)*int(y,k,0,2*pi);
ezmesh(R,100)
方差
σ
X
2
(
n
)
=
R
X
(
n
,
n
)
−
m
X
2
(
n
)
=
1
2
\sigma_X^2(n)=R_X(n,n)-m_X^2(n)=\frac{1}{2}
σX2(n)=RX(n,n)−mX2(n)=21
syms t k
y=sin(w*t+k);
h=1/(2*pi)*int(y,k,0,2*pi);
m=(y-h)^2;
D=1/(2*pi)*int(m,k,0,2*pi);
ezplot(D);
平稳随机过程
严格平稳随机过程任意N维分布不随时间起点的不同变化(shift-invariance)。
f
X
(
x
1
,
x
2
,
.
.
.
,
x
n
,
t
1
,
.
.
.
,
t
n
)
=
f
X
(
x
1
,
.
.
.
,
x
n
,
t
1
+
c
,
t
2
+
c
,
.
.
.
,
t
n
+
c
)
f_X(x_1,x_2,...,x_n,t_1,...,t_n)=f_X(x_1,...,x_n,t_1+c,t_2+c,...,t_n+c)
fX(x1,x2,...,xn,t1,...,tn)=fX(x1,...,xn,t1+c,t2+c,...,tn+c)特别地,一维概率密度与时间无关
f
X
(
x
,
t
)
=
f
X
(
x
)
f_X(x,t)=f_X(x)
fX(x,t)=fX(x)二维概率密度只与时间间隔有关(思考为什么还与间隔有关)
f
X
(
x
1
,
x
2
,
t
1
,
t
2
)
=
f
X
(
x
1
,
x
2
,
τ
)
,
τ
=
t
1
−
t
2
f_X(x_1,x_2,t_1,t_2)=f_X(x_1,x_2,\tau),\tau=t_1-t_2
fX(x1,x2,t1,t2)=fX(x1,x2,τ),τ=t1−t2反过来,广义平稳随机过程指满足
m
X
(
t
)
=
常
数
m_X(t)=常数
mX(t)=常数
R
X
(
t
1
,
t
2
)
=
R
X
(
τ
)
R_X(t_1,t_2)=R_X(\tau)
RX(t1,t2)=RX(τ)的随机过程。例如刚才画的随机相位信号均值为0,相关函数只与时间差有关,是平稳的。由上立即有
R
X
(
t
,
t
)
R_X(t,t)
RX(t,t)恒定,即方差恒定。下图最左侧是时域分析中(广义)平稳随机过程的某次试验图,分别与对应随机过程的方差、均值(在不同时间点)不恒定的右两图对比。
平稳随机过程不意味随机变量值/随机变量函数/随机变量的分布形式不随时间变化,而意味着随机变量随时间分布变化的某种方式没有变化。
循环平稳(Cyclostationarity)指
F
X
(
x
1
,
.
.
.
,
x
N
,
t
1
+
M
T
,
.
.
.
,
t
N
+
M
T
)
=
F
X
(
x
1
,
.
.
.
,
x
N
,
t
1
,
.
.
.
,
t
N
)
F_X(x_1,...,x_N,t_1+MT,...,t_N+MT)=F_X(x_1,...,x_N,t_1,...,t_N)
FX(x1,...,xN,t1+MT,...,tN+MT)=FX(x1,...,xN,t1,...,tN)当白噪声信号受到正弦信号调制产生的波形满足循环平稳。写一个简单的对白噪声用正弦波幅度调制,(代码与本主题无关不贴了)运行效果如图:
可以认为生成的𝑥(𝑡)=𝑛(𝑡)sin2𝜔𝑡是一个循环平稳过程。
设X(t)严格循环平稳,而随机变量θ在区间(0,T)上均匀分布,θ与X(t)统计独立,则Y(t)=X(t-θ)是严格平稳随机过程,N维分布函数
F
X
(
x
1
,
.
.
.
,
x
N
−
1
,
t
1
,
.
.
.
,
t
N
)
=
1
T
∫
0
T
F
X
(
x
1
,
.
.
,
x
N
,
t
1
−
α
,
.
.
.
,
t
N
−
α
)
d
α
F_X(x_1,...,x_{N-1},t_1,...,t_N)=\frac{1}{T}\int_0^TF_X(x_1,..,x_N,t_1-\alpha,...,t_N-\alpha)d\alpha
FX(x1,...,xN−1,t1,...,tN)=T1∫0TFX(x1,..,xN,t1−α,...,tN−α)dα
渐进平稳
写作
lim
c
→
∞
f
X
(
x
1
,
x
2
,
.
.
.
,
x
N
,
t
1
+
c
,
.
.
.
,
t
N
+
c
)
\lim_{c\to\infty}f_X(x_1,x_2,...,x_N,t_1+c,...,t_N+c)
c→∞limfX(x1,x2,...,xN,t1+c,...,tN+c)存在且与c无关。
k阶严格平稳
当时移不变性仅对前k阶有效,就称为k阶严格平稳。高阶平稳能推出低阶平稳,反之不然。例子比较难举,例如找一个一阶严格平稳的随机过程,其协方差矩阵是[X(t),X(t+1),X(t+2)]
[
σ
2
a
b
a
σ
2
c
b
c
σ
2
]
\left[\begin{array}{cc} \sigma^2 & a & b \\ a & \sigma^2 & c \\ b & c& \sigma^2 \end{array}\right]
⎣⎡σ2abaσ2cbcσ2⎦⎤由于E[X(t)X(t+1)]=a,时移后得到E[X(t+1)X(t+2)]=c而不是a,所以它不是二阶严格平稳的。类似地还可以举出其他例子。