随机过程的概率分布
一维连续概率分布: F x ( x , t ) = P { X ( t ) ≤ x } F_x(x,t)=P\{X(t)\le x\} Fx(x,t)=P{
X(t)≤x}对x偏导,就是X(t)的一维概率密度。显然,这两个二元函数将随机变量的分布\密度铺到整个时间轴上,一个时间对应一个变量分布情况。因此只考虑某个t的结论全部和随机变量结论相同,例如 ∫ − ∞ ∞ f ( x , t ) d x = 1 \int_{-\infty}^{\infty}f(x,t)dx=1 ∫−∞∞f(x,t)dx=1blablabla。
一维离散概率分布同理。 F x ( x , n ) = P { X ( n ) ≤ x } F_x(x,n)=P\{X(n)\le x\} Fx(x,n)=P{
X(n)≤x}
一般,若X(t)是Y的函数,还是可以 f X ( x , t ) = f Y ( y ) ∣ J ∣ f_X(x,t)=f_Y(y)|J| fX(x,t)=fY(y)∣J∣其中y替换成含有x的式子(如果不严格平稳,里面一般也含着t)。
二维连续概率分布同理。 F X ( x 1 , x 2 , t 1 , t 2 ) = P { X ( t 1 ) ≤ x 1 , X ( t 2 ) ≤ x 2 } F_X(x_1,x_2,t_1,t_2)=P\{X(t_1)\le x_1,X(t_2)\le x_2\} FX(x1,x2,t1,t2)=P{
X(t1)≤x1,X(t2)≤x2}二维连续概率密度同理。 f X ( x 1 , x 2 , t 1 , t 2 ) = ∂ 2 F X ( x 1 , x 2 , t 1 , t 2 ) ∂ x 1 ∂ x 2 f_X(x_1,x_2,t_1,t_2)=\frac{\partial^2F_X(x_1,x_2,t_1,t_2)}{\partial x_1\partial x_2} fX(x1,x2,t1,t2)=∂x1∂x2∂2FX(x1,x2,t1,t2)初步理解成从时间轴上揪出来两个点,对应出来两个随机变量后套上概率论公式就完了。
二维离散概率分布、离散概率密度同理,只不过将t换成n。
多维概率密度同理。完全描述某过程统计特性应该使N趋于无穷大,工程应用中二维概率分布就够了(计算功率谱密度等只需二维)。
随机过程的数字特征
均值
对于连续系统,写作 m X ( t ) = E ( X ( t ) ) = ∫ − ∞ ∞ x f X ( x , t ) d x m_X(t)=E(X(t))=\int_{-\infty}^{\infty}xf_X(x,t)dx mX(t)=E(X(t))=∫−∞∞xfX(x,t)dx同理,把t换成n,离散系统写作 m X ( n ) = E ( X ( n ) ) = ∫ − ∞ ∞ x f X ( x , n ) d x m_X(n)=E(X(n))=\int_{-\infty}^{\infty}xf_X(x,n)dx mX(n)=E(X(n))=∫−∞∞xfX(x,n)dx时间不连续,但状态仍(一般)是连续的,所以上式仍用积分号。每个t(或n)(一般)对应一个均值,故 m X ( t ) , m X ( n ) m_X(t),m_X(n) mX(t),mX(n)是函数。
方差
对于随机过程,定义式 σ X 2 ( t ) = E { [ X ( t ) − m X ( t ) ] 2 } = E [ X 2 ( t ) ] − m X 2 ( t ) \sigma_X^2(t)=E\{[X(t)-m_X(t)]^2\}=E[X^2(t)]-m_X^2(t) σX