人工智能是当前、也将成为未来相当长时间的热门领域。本文概括其在音乐领域的垂直应用。作为交叉学科,该领域需要有一定数理基础,特别是傅里叶变换变体、卷积运算、动态规划算法(特别是Viterbi算法)和各种图结构、简单的物理声学基础、常见随机过程,最好有NLP基础。在智能编配等分支,对基础乐理、和声学、配器法等有高要求。技术细节和代码实现将在后续逐一讨论,在此只描绘大致框架,蜻蜓点水。
音乐人工智能包括若干分支,如听歌识曲、分类推荐、智能作曲、智能配器、智能混音等,本文先介绍应用最成熟的领域———听歌识曲。
-
AI+机器听觉(Content-Based MIR,实现基于内容的音乐检索)
从根据语言数据(直接用文字标定每一首歌的风格,歌手等信息)到直接根据音乐本身进行推断的转变。
1.1 Music Fingerprinting(音乐指纹)
H(X)理解为哈希函数,将音频数组X映射到哈希值Y,Y有更小的数据量,同时体现歌曲间的差异,具有辨别不同歌曲的特性。
上图为著名的飞利浦算法。简述为,对源音频加窗(如汉宁窗),做短时傅里叶变换(STFT&#