音乐信号处理基础 设置文件格式例如,将Windows系统音频文件转移到Mac上,需要把格式从wav转化成aiff。通过命令psf_format format;format=psf_getFormatExt("soundtrack.wav")getFormatExt就是提取字符串并分类的程序。执行这个函数就可以了。它返回psf_format类型文件,可以直接将原始二进制音频文件分配到合适的PSF_PRO...
随机过程基础(8)---随机过程的线性变换 判断是否存在固定音高如果音高值几乎是恒定的,那么音高信息就能够找到。对于清音的片段,可以发现获得的音高因素很小,并且变化很大。那么可以说轻音片段的音高信息是缺失的。如果能找到重复的音高,这个片段就是浊音。预相位能量比可以求归一化的预相位能量比区分浊音和清音片段。对于浊音,相邻样本之间的变化值很小,而对于清音部分这个分子很大。求所谓预相位能量的程序如下:...
数据结构 图论DFS、BFS、最短路径树、最小生成树 python实现 广度优先遍历(BFS)图的广度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后从v出发依次访问v的每个未被访问的邻接点w。当v的所有邻接点全部访问完后,再对v的每个邻接点w继续进行广度优先遍历,直至图中所有和源点v有路径相通的顶点均已被访问为止。若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点为新的源点重复上述过程,直至图中所有的顶点均已被访问为止。如下代码只考虑无向连通图...
随机过程基础(7) 目录互功率谱非平稳过程的功率谱广义功率谱密度时变功率谱例子matlab互相关函数估计matlab功率谱估计例子:数字图像直方图随机过程应用:判断说话中的清音浊音互功率谱类似从自相关函数推出互相关函数,也可以从单个随机过程的功率谱推出互功率谱。两个随机过程X(t)和Y(t),它们的互功率谱定义是GXY(ω)=E[limT→∞12TXT(ω)YT∗(ω)]G_{XY}(\omega)=E[\l...
随机过程基础(6)--应用随机过程分析音乐(语音)信号(1)、随机序列功率谱(PSD) 随 机 序 列 功 率 谱对于平稳随机序列X(n),如果相关函数满足∑m=−∞+∞∣RX(m)∣<∞\sum_{m=-\infty}^{+\infty}|R_X(m)|<\inftym=−∞∑+∞∣RX(m)∣<∞那么它的功率谱定义为自相关函数RX(m)R_X(m)RX(m)的傅里叶变换:GX(ejω)=∑m=−∞+∞∣RX(m)∣e−jmωG_X(e^{j\o...
高级数据结构---B树、红黑树 python实现 B树一棵 2t (t>=2)阶(此处阶数表示每个节点最大的孩子数量)B树是一棵平衡的 2t 路搜索树。它或者是空树,或者是满足下列性质的树:1、根节点至少有两个子女;2、每个非根节点所包含的关键字个数j满足:t-1<=j<=2t-1;3、每个节点都包含了目前节点内key数量+1个孩子指针,叶子节点除外;4、节点孩子树中的key与当前节点中key的值存在大小关系;5、所...
电磁场与电磁波(2) 第一章部分习题:1:试采用直角坐标中∇⋅A=∂Ax∂x+∂Ay∂y+∂Az∂zabla\cdot\boldsymbol A=\frac{\partial A_x}{\partial x}+\frac{\partial A_y}{\partial y}+\frac{\partial A_z}{\partial z}∇⋅A=∂x∂Ax+∂y∂Ay+∂z∂Az相似的方法推出圆柱坐标下的...
python--音乐播放小程序 1.网易云公开可下载内容爬取器(声明:未触犯软件使用规则及条款法律)伪装成Edge浏览器进入界面,爬取列表中第一个音频地址并存入相应文件夹中。这里有一个最简单的爬虫程序(注意,要先在网易云音乐网页(html语言)中获得第一个链接的地址),和一个最简单的tkinter GUI编程;from tkinter import *from selenium import webdriverglobal...
通信电子电路(5) 上章一些题儿:1:这题不要求定量计算参数,所以简单,把已有的模块合起来就可以了。只是所谓组合式偏置电路和零偏置电路没有提到。零偏置本来是PN结中的概念。在本征半导体基础上,n型半导体中添加5价(磷等)杂质(pentavalent impurities)而p型中添加3价(硼、铝等)杂质(trivalent impurities)。杂质的在P/N型半导体中添加是不均匀的,因此载流子(charg...
通信电子电路(4)----高频功率放大器(2) RC Ec Eb Ubm变化的影响ucemin>Uces,欠压u_{cemin}>U_{ces},欠压ucemin>Uces,欠压ucemin=Uces,临界u_{cemin}=U_{ces},临界ucemin=Uces,临界ucemin<Uces,过压u_{cemin}<U_{ces},过压ucemin<Uces,过压ucemin=Ec−U...
通信电子电路(3)---高频功率放大器 基本原理电路小信号调谐放大器的输入信号很小,在微伏和毫伏数量级,晶体管工作于线性区域;它的功率很小,但通过阻抗匹配,可以获得很大的功率增益(30~40dB)。小信号放大器一般工作在甲类状态,效率较低。而调谐功率放大器的输入信号要大很多,几百毫伏到几伏,晶体管工作延伸到非线性区域——截止和饱和区。这种放大器输出功率大,效率较高,一般工作在丙类状态,主要技术指标是输出功率、效率和谐波抑制度。如下,...
通信电子电路(2)---使用multisim分析电路小技巧、晶体管等效电路 RLC电路瞬态分析在瞬态分析中设置参数如下,输出参数为信号源两端和R2两端的电压输出结果如下。示波器:示波器经常使用。右侧缩略栏中有4通道、2通道示波器,按照实际实验中的方法接就可以。失真分析器失真分析器在音频中常用,设计硬件效果器和功放时常用它来测试。其中,THD是total harmonic distortion,指(快速傅里叶变换后)信号不大于某特定阶数H(默认取1...
随机过程基础(5)---各态历经性(2)、联合分布、连续信号功率谱密度(PSD) 各态历经性可以证明,随机过程X(t)具有均值遍历性的充要条件是limY→∞1T∫02T(1−τ2T)[RX(τ)−mX2]dτ=0\lim_{Y\rightarrow \infty}\frac{1}{T}\int_0^{2T}(1-\frac{\tau}{2T})[R_X(\tau)-m_X^2]d\tau =0Y→∞limT1∫02T(1−2Tτ)[RX(τ)−mX2]dτ=0具...
随机过程基础(4)---各态历经性、典型随机过程matlab仿真 各态历经性部分源自《随机信号分析与处理》,罗鹏飞等著,清华大学出版社;公式旁标注*;时频转换部分证明源自《信号与系统分析》,吴京等著,国防科技大学出版社,证明处有标注。部分参考资料https://en.wikipedia.org、http://www.maths.qmul.ac.uk/~bb/TS_Chapter4_3&4.pdf各态历经部分代码来自https://www.math...
C++贪吃蛇 最简单实现 目的就是实现贪吃????程序。按照面向过程的思想来想的话,搭建边框—>开辟蛇的数组并画出蛇—>随机生成第一个食物—>保持读取更改蛇头方向指令,同时每隔一段时间让蛇按照某方向前进(通过蛇所在的坐标更新实现),同时更新显示食物位置,同时检查:蛇头是否碰到边界、碰到自己(这样游戏结束);是否碰到食物(这样就更新蛇长—>加分—>判断加等级、酌情加快蛇前进速度。)按照面向对象(OO...
随机过程基础(3)---随机过程的统计描述、平稳随机过程 随机过程的概率分布一维连续概率分布:Fx(x,t)=P{X(t)≤x}F_x(x,t)=P\{X(t)\le x\}Fx(x,t)=P{X(t)≤x}对x偏导,就是X(t)的一维概率密度。显然,这两个二元函数将随机变量的分布\密度铺到整个时间轴上,一个时间对应一个变量分布情况。因此只考虑某个t的结论全部和随机变量结论相同,例如∫−∞∞f(x,t)dx=1\int_{-\infty}^{\inf...
机器学习入门(1)---以手写数字识别为例 (部分代码源自pytorch mnist数据集文档)机器学习的核心组件包括:层(相当于转移函数)、模型(层网络)、损失函数(衡量某模型参数选择好坏的函数)、优化器(使损失函数最小)。简单的手写数字识别使用mnist数据集,其中70000张用于手写数字图片,60000张用于训练,10000张用于检验。(test data和training data应该分开,并且不能根据training data...
通信电子电路multisim仿真(1)---单调谐放大器 单调谐放大器以上是经过我调试的单调谐放大器最基本的结构。由于没用变压器。这个电路当信号源和负载变化时无法阻抗匹配)。运行如下。这个结果是可以接受的。以下是加入变压器进行阻抗匹配后得到的标准的电路图。经我调试,得到如下结果:(由于multisim中抽头变压器的QL等参数不好调,这里的信号源姑且根据前几次的运行结果调整到LC回路的谐振频率。由于未知multisim抽头变压器线圈的品质因数...
数值计算方法 线性方程组的数值解法(4)---向量和矩阵范数(norm) 高斯-赛德尔(Gauss-Seidel)迭代、共轭梯度(Conjugate Gradient)迭代 向量范数设x∈Rn\boldsymbol x\in \boldsymbol R^nx∈Rn则范数||x||满足:∣∣x∣∣≥0||\boldsymbol x|| \ge 0∣∣x∣∣≥0当且仅当x=0,||x||=0。任意实数λ∣∣λx∣∣=∣λ∣∣∣x∣∣||\lambda\boldsymbol x||=|\lambda|||\boldsymbol x||∣∣λx∣∣=∣λ∣∣∣x∣∣且对任意...
随机过程基础(2)---多维随机变量常用性质、随机过程的引入 二维随机变量分布函数和概率密度二维随机变量的联合概率密度通过如下方式定义:fXY(x,y)f_{XY}(x,y)fXY(x,y)且∫−∞∞∫−∞∞fXY(x,y)dxdy=1\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f_{XY}(x,y)dxdy=1∫−∞∞∫−∞∞fXY(x,y)dxdy=1可以想象,二维随机变量的联合概率密度占据了三维...