挑战程序设计竞赛:难度增加的抽签问题

题目大意

在这里插入图片描述
在这里插入图片描述

解题思路

注意这里有放回抽样

  • 普通思路,暴力搜素所有4张卡片组合。
    • 复杂度: O ( n 4 ) O(n^4) O(n4),超时。
  • 转换思路:
    • a + b + c + d = m ⇒ a + b = m − c − d a+b+c+d = m \Rightarrow a+b=m-c-d a+b+c+d=ma+b=mcd
    • 因此我们先计算出任意两个物品的重量和。这样共有 n 2 n^2 n2个组合,存在数组 a a a中。
    • n 2 n^2 n2组合排序。
    • 对任意两个 a , b a, b a,b利用二分搜索判断 m − a − b m-a-b mab是否在数组 a a a中。若在,则可以生成。
    • 复杂度:
      • 排序: O ( n 2 l o g n ) O(n^2logn) O(n2logn)
      • 循环搜索: O ( n 2 l o g n ) O(n^2logn) O(n2logn)

代码

#include<iostream>
#include<algorithm>
using namespace std;
const int MAXN = 1005*1005;
int a[MAXN];
int b[MAXN];
int main()
{
    int n, m, cnt;
    while(cin >> n >> m)
    {
        cnt = 0;
        for(int i=0; i<n; i++)
            cin >> b[i];
        for(int i=0; i<n; i++)
            for(int j=0; j<n; j++)
                a[cnt++] = b[i]+b[j];

        int flag = 0;
        for(int i=0; i<n; i++)
        {
            for(int j=0; j<n; j++)
            {
                if(binary_search(a,a+cnt,m-b[i]-b[j]))
                    flag = 1;
            }
        }

        if(flag)
            cout << "Yes" << endl;
        else
            cout << "No" << endl;
    }
    return 0;
}

知识点

  • STL函数: b i n a r y _ s e a r c h ( a , a + n , k e y ) binary\_search(a, a+n, key) binary_search(a,a+n,key) 的使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值