第一个抽签的问题,判断从口袋放回的拿出n个数,和是否可能为m。
一、可以写四重循环。
但是当n的范围1<=n<=1000时,时间复杂度太高,考虑
二、二分搜索与O(n^3logn)
int n,m,k[MAX_N];
bool binary_search(int x){
int l=0,r=n;
while(r-l>=1){
int i=(l+r)/2;
if(k[i]==x) return true;
else if(k[i]<x) l=i+1;
else r=i;
}
}
void solve(){
sort(k,k+n);
bool f=false;
for(int a=0;a<n;a++){
for(int b=0;b<n;b++){
for(int c=0;c<n;c++){
if(binary_search(m-k[a]-k[b]-k[c])){
f=true;
}
}
}
}
if(f) puts("Yes"); else puts("No");
}
STL中的binary_search:
bool binary_search(ForwardIterator first, ForwardIteratorlast, const T& value, StrictWeakOrdering comp);
在[first,last)中查找value,如果找到返回Ture,否则返回False。
还有一个:
equal_range是C++ STL中的一种二分查找的算法,试图在已排序的[first,last)中寻找value,它返回一对迭代器i和j,其中i是在不破坏次序的前提下,value可插入的第一个位置(亦即lower_bound),j则是在不破坏次序的前提下,value可插入的最后一个位置(亦即upper_bound),因此,[i,j)内的每个元素都等同于value,而且[i,j)是[first,last)之中符合此一性质的最大子区间
三、O(n^2logn)算法
kc+kd=m-ka-kb。
这种情况不能使用二分搜索,但如果先枚举出Kc+Kd的n^2个数字并排好序。
int n,m,k[MAX_N];
int kk[MAX_N*MAX_N];
bool binary_search(int x){
int l=0,r=n*n;
while(r-l>=1){
int i=(l+r)/2;
if(kk[i]==x) return i+1;
else if(kk[i]<x) l=i+1;
else r=i;
}
return false;
}
void solve()
{
for(int c=0;c<n;c++){
for(int d=0;d<n;d++){
kk[c*n+d]=k[c]+k[d];
}
}
sort(kk,kk+n*n);
bool f=false;
for(int a=0;a<n;a++){
for(int b=0;b<n;b++){
if(binary_search(m-k[a]-k[b]))f=true;
}
}
if(f) puts("Yes");
else puts("No");
}