Pytorch版Faster R-CNN配置运行填坑记录

Pytorch Faster R-CNN配置运行填坑记录

系统环境配置

之前一直在用Nvidia GTX1080Ti做实验,用到的代码及整套开发环境的版本都较老(Python2.7+Pytorch0.4.0+CUDA8.0),由于20系列显卡或30系列显卡都不再支持CUDA8.0,所以需要进行一次整体升级,在此做一个升级配置环境的填坑记录。

项目地址

https://github.com/jwyang/faster-rcnn.pytorch/tree/pytorch-1.0
注意是pytorch-1.0分支不是master分支,仔细阅读 README.md 文件,准备好需要的数据集和预训练模型,安装好相关依赖包,一定要记得执行以下命令:

cd lib
python setup.py build develop

运行环境

源项目推荐环境为:

  • Python 2.7 or 3.6
  • Pytorch 1.0 (for Pytorch 0.4.0 go to master branch)
  • CUDA 8.0 or higher

我的配置环境:

  • Python3.7
  • Pytorch1.4.0
  • CUDA10.1
  • Nvidia RTX2080Ti
  • Ubuntu16.04

(亲测Windows环境下问题更多,最后卡在一个问题上果断放弃,选择了Ubuntu)

问题汇总

1. 问题:ImportError: cannot import name ‘_mask’ from 'pycocotools’
解决:由于作者应该是用python2.7编译的,若确认已执行 python setup.py build develop,参考:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值