Activewaste
码龄4年
  • 566,989
    被访问
  • 94
    原创
  • 75,865
    排名
  • 7,312
    粉丝
关注
提问 私信

个人简介:good good study,day day up

  • 加入CSDN时间: 2017-12-13
博客简介:

Activewaste

博客描述:
恋爱可以慢慢谈,代码必须趁热写
查看详细资料
  • 7
    领奖
    总分 3,314 当月 73
个人成就
  • 获得856次点赞
  • 内容获得449次评论
  • 获得2,870次收藏
创作历程
  • 14篇
    2021年
  • 47篇
    2020年
  • 70篇
    2019年
成就勋章
TA的专栏
  • TensorRT学习总结
    4篇
  • Transformer
    2篇
  • 目标检测
    13篇
  • mmdetection源码笔记
    8篇
  • 论文笔记
  • 小目标检测
    10篇
  • Anchor-free
    20篇
  • 特征层面
    21篇
  • Anchor层面
    4篇
  • backbone层面
    5篇
  • 注意力方面
    4篇
  • 自适应
    3篇
  • 数据层面
    3篇
  • 样本层面
    9篇
  • 分类与回归
    11篇
  • 其他
    14篇
  • pytorch笔记
    8篇
  • 深度学习
    12篇
  • 实习秋招面经
    3篇
  • python
    6篇
  • 安装、配置问题集锦
    8篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉深度学习神经网络pytorch
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

2022届计算机视觉算法秋招面经(CV岗)——offer经

已拿offer公司:字节,商汤,顺丰,海康,小红书,拼多多,腾讯、ponyai、华为、百度目前手里有近10个CV算法工程师意向书:字节,商汤,百度,顺丰,华为,小红书,拼多多,小马智行,海康威视,腾讯等。接下来会花很多时间在小红书上整理这一过程所有的经验以及技巧,包括:丰富简历内容,如何打比赛(大佬止步),如何刷题,刷什么题,刷到什么程度,面试技巧,面经整理,hr面技巧,如何反问面试官,如何argue薪资等等等,大家有需要可以关注一波哈,内容保证丰富!助力大家秋招收割offer到手软!大家如果是刚.
原创
发布博客 2021.10.24 ·
1464 阅读 ·
8 点赞 ·
4 评论

【论文笔记】:Mutual Supervision for Dense Object Detection

&TitleMutual Supervision for Dense Object DetectionICCV2021代码&Summary作者打破了密集检测器中这两个头的训练样本相同的惯例,探索了一种新的监督范式,即相互监督(MuSu),分别并相互分配分类和回归头的训练样本以确保这种一致性。MuSu主要根据分类预测分数定义回归头的训练样本,然后根据回归头的定位分数定义分类头的样本。实验结果表明,这种相互监督的方法保证了检测器的收敛性,并在具有挑战性的MS COCO基准上验
原创
发布博客 2021.10.13 ·
366 阅读 ·
0 点赞 ·
0 评论

(转载)注意力机制中的Q、K和V的意义

看到一篇解释,感觉还不错,后面深入理解了再来重新编辑一波以翻译为例:source:我 是 中国人target: I am Chinese比如翻译目标单词为 I 的时候,Q为I而source中的 “我” “是” “中国人”都是K,那么Q就要与每一个source中的K进行对齐(相似度计算);"I"与"我"的相似度,"I"与"是"的相似度;"I"与"中国人"的相似度;相似度的值进行归一化后会生成对齐概率值(“I"与source中每个单词的相似度(和为1)),也可以注意力值;而V代表每个.
转载
发布博客 2021.06.01 ·
1155 阅读 ·
2 点赞 ·
0 评论

【论文笔记】:Swin transformer(转载)

&Summary作者单位:微软亚洲研究院代码:https://github.com/microsoft/Swin-Transformer论文:https://arxiv.org/abs/2103.1403目标检测刷到58.7 AP(目前第一)!实例分割刷到51.1 Mask AP(目前第一)!语义分割在ADE20K上刷到53.5 mIoU(目前第一)!性能优于DeiT、ViT和EfficientNet等主干网络本文介绍了一种称为Swin Transformer的新型视觉Tran.
转载
发布博客 2021.05.28 ·
835 阅读 ·
0 点赞 ·
1 评论

【论文笔记】:PP-YOLO、PP-YOLOv2、PP-YOLO Tiny

&TitlePP-YOLO: An Effective and Efficient Implementation of Object Detector(2020)PP-YOLOv2: A Practical Object Detector(2021)&Summary目标检测算法的准确性和推理速度不可兼得,本文的工作旨在通过tricks组合来平衡目标检测器的性能以及速度。PP-YOLO: 45.2% mAP,速度高达72.9 FPS!FPS和mAP均超越YOLOv4,FPS也远
翻译
发布博客 2021.05.03 ·
4050 阅读 ·
11 点赞 ·
2 评论

2022届春招实习面经(CV岗)——offer经

已拿offer公司:腾讯、ponyai、vivo研究院目前已拿三个offer,可能会随缘面试,后续如果有继续面试的话,继续补充本科211,硕士985二区在投论文 + 顶会下的top5比赛 + 小厂三个月实习经历以下面经可能不全,因为每次面试完,不都是立刻就记录下来的,有些问题没印象就没记下来腾讯一面(IEG) 3.10: 21:00 ~ 21:55自我介绍介绍比赛介绍一下DetectoRS,DetectoRS去年的精度多高?介绍mean teacher了解第一名的算法.
原创
发布博客 2021.04.06 ·
1060 阅读 ·
7 点赞 ·
1 评论

2022届春招实习面经(CV岗)——凉经

已挂公司:阿里、字节、旷视目前已拿三个offer,可能会随缘面试,后续如果有继续面试的话,继续补充本科211,硕士985简历东西:二区在投论文 + 顶会下的top5比赛 + 小厂三个月实习经历阿里巴巴阿里云一面(3.3,20:52~22:00)代码题:查找一个序列中是否有连续递增子序列长度其为4的代码题:求IOU(注意点:使用sort()函数,不然考虑不全)自我介绍一下详细问了一下简历上的实习项目如何解决小目标检测效果差的问题解释aucmAP如何计算有哪些trick、或者.
原创
发布博客 2021.04.06 ·
552 阅读 ·
3 点赞 ·
0 评论

【论文笔记】:PSS(NMS-free)

&TitleObject Detection Made Simpler by Eliminating Heuristic NMS代码&SummaryMotivation:如果网络只能为图像中的每个实例对象识别一个正样本,那么就没有必要使用NMS。all the locations on the CNN feature maps within the center region of an object are assigned positive labels. As a r
原创
发布博客 2021.02.08 ·
775 阅读 ·
1 点赞 ·
0 评论

Ubuntu18.04下opencv3.4.3编译与安装,及常见问题记录

引言博主前段时间在搞tensorrt的INT8量化的时候,安装opencv,连续安装了好几次都报错,一直放着没解决。最近又项目需要,又得自己安装opencv,上一次莫名奇妙的成功,这一次顺顺利利,特来做个总结,记录一下。编译安装过程记录官网下载所需要的版本选择所需要的版本,然后点 Source code(zip)下载,这里版本下的是3.4.3,这个版本安装好像比较顺利(忘了之前安装失败的版本是什么了)。首先,安装一些依赖,根据自己的情况选择,如果不知道自己安装了那些依赖,就都输入一遍,如果已经
原创
发布博客 2021.02.05 ·
318 阅读 ·
0 点赞 ·
0 评论

【论文笔记】:Learning from Noisy Anchors for One-stage Object Detection

TitleLearning from Noisy Anchors for One-stage Object Detection代码CVPR 2020 camera readySummary目前最先进的目标检测器依赖于回归和分类一系列可能的锚点,这些锚点根据它们与相应的GT的IoU分为正样本和负样本。这样的设置方法会导致歧义性标签的产生,这可能会产生噪音,并且对训练具有挑战性。作者通过设计与锚相关联的cleanliness score来缓解由不完美的标签分配产生的噪声影响。在不增加任何额
原创
发布博客 2021.02.03 ·
211 阅读 ·
0 点赞 ·
1 评论

梯度下降:BGD、SGD、mini-batch GD介绍及其优缺点

引言梯度下降:两个意思,根据梯度(导数)的符号来判断最小值点x在哪;让函数值下降(变小)。简单来说就是一种寻找目标函数最小化的方法,它利用梯度信息,通过不断迭代调整参数来寻找合适的目标值。其共有三种:BGD,batch gradient descent:批量梯度下降SGD,stochastic gradient descent:随机梯度下降mini-batch GD,mini-batch gradient descent:小批量梯度下降BGD假设有损失函数:y ^ 是预测值,
原创
发布博客 2021.01.21 ·
3753 阅读 ·
4 点赞 ·
3 评论

【论文笔记】:LLA: Loss-aware Label Assignment for Dense Pedestrian Detection

LLA论文笔记LLA: Loss-aware Label Assignment for Dense Pedestrian DetectionZheng代码Summary标签分配策略对检测器的性能影响很大,现有研究都是在常规的通用目标检测上做,不适用于密集行人检测场景。作者提出了一种简单有效的分配策略,称为损失感知的标签分配(LLA),以提高人群场景中行人检测的性能。LLA首先计算每个锚点与GT对之间的分类(cls)和回归(reg)损失。然后将联合损失定义为cls和reg损失的加权总和作为分
原创
发布博客 2021.01.18 ·
545 阅读 ·
1 点赞 ·
0 评论

(转载)池化层的反向传播是怎么实现的

引言传统的神经网络无论是隐层还是激活函数的导数都是可导,可以直接计算出导数函数,然而在CNN网络中存在一些不可导的特殊环节,比如Relu等不可导的激活函数、造成维数变化的池化采样、已经参数共享的卷积环节。NN网络的反向传播本质就是梯度(可能学术中会用残差这个词,本文的梯度可以认为就是残差)传递,所以只要我们搞懂了这些特殊环节的导数计算,那么我们也就理解CNN的反向传播。Pooling池化操作的反向梯度传播CNN网络中一个不可导的环节就是Pooling池化操作,因为Pooling操作使得feature
转载
发布博客 2021.01.16 ·
347 阅读 ·
2 点赞 ·
0 评论

(转载)yolov5理论学习笔记

算法创新分为三种方式第一种:面目一新的创新,比如Yolov1、Faster-RCNN、Centernet等,开创出新的算法领域,不过这种也是最难的第二种:守正出奇的创新,比如将图像金字塔改进为特征金字塔第三种:各种先进算法集成的创新,比如不同领域发表的最新论文的tricks,集成到自己的算法中,却发现有出乎意料的改进对象检测网络的通用架构:1)Backbone -形成图像特征。2)Neck:对图像特征进行混合和组合,生成特征金字塔3)Head:对图像特征进行预测,应用锚定框,生成带有类概率、
转载
发布博客 2021.01.01 ·
6836 阅读 ·
3 点赞 ·
1 评论

安装dlib gpu版本记录(解决遇到的Error: The --yes options to dlib‘s setup.py don‘t do anything……)

安装dlib cpu安装dlib的时候,如果直接使用的是pip,则是不带有GPU版本,在调用执行的时候,使用的是CPUpip install dlib安装dlib gpu如果要使用GPU的话,则需要自己编译dlib,然后再安装的时候设置使用CUDAgit clone https://github.com/davisking/dlib.gitcd dlibmkdir buildcd buildcmake .. -DDLIB_USE_CUDA=1 -DUSE_AVX_INSTRUCTIONS
原创
发布博客 2020.12.10 ·
1817 阅读 ·
6 点赞 ·
3 评论

(转载+整理)超详细的cmake教程

cmake教程参考什么是cmakecmake 常见语法整理入门案例单个源文件多个源文件同一目录,多个源文件多个目录,多个源文件进阶案例自定义编译选项指定安装和测试定制安装规则为工程添加测试支持gdb添加环境检查添加版本生成安装包将其他平台的项目迁移到 CMake其他参考超详细的cmake教程CMakeLists.txt文件如何编写?注:本文主要内容来源于第一篇博客,所以转载的原地址仍然是第一篇的地址。在此基础上,有从其他博客文章学习进行总结,将基础性的语法知识进行合并,供日后复习参考。什么是
转载
发布博客 2020.12.03 ·
3470 阅读 ·
8 点赞 ·
1 评论

INT8量化原理理解

INT8量化的深入理解参考量化三连问INT8量化原理INT8量化流程INT8量化实现TensorRT 的INT8量化关于INT8量化原理的Q&A参考Int8量化-介绍(一)博主在上面文章的基础上进行合并整理,包括从这些文章的评论里提取有用的信息,帮助大家理解INT8量化的原理,加深巩固认识,再次感谢一下上面的文章。强烈推荐一下第一篇知乎回答,我自己来回看了包括评论有三遍左右进行理解加深,答主写得是真的好。量化三连问为什么量化有用?因为CNN对噪声不敏感。为什么用量化?模型太
原创
发布博客 2020.12.02 ·
3509 阅读 ·
8 点赞 ·
2 评论

【干货】用tensorRT加速yolov5全记录,包含加速前后的数据对比

TensorRT 实现模型yolov5的加速,附自己测的数据对比安装tensorRT首先了解自己ubuntu、CUDA和cuDNN版本安装TensorRT可能出现的问题:使用tensorRT加速LeNet进行验证tensorRT加速yolov5加速前后效果对比安装tensorRT前言:这里仅记录博主自己用tar安装tyensorRT的流程,对于DEV版本等的安装,请移步其他博客。使用tar安装是博主认为相对比较简单的方式了,要注意的是解压版的tar需要我们手动去修改lib的路径,如果是使用安装版的,就不
原创
发布博客 2020.11.25 ·
8486 阅读 ·
11 点赞 ·
25 评论

部署tensorRT时,解决可能出现的问题。

问题1:NvInfer.h: No such file or directory 或者/usr/bin/ld:cannot find -lnvinfer背景:首先:这个问题的出现的前提是,你安装的tensorRT是zip或者tar版本,不需要root权限。其次:出现这个问题是在使用tensorrtx github库时候,跑lenet的demo的时候出现的。使用make编译的时候报的错。在github的tensorrtx/tutorials/faq.md中说过如何解决这个问题:然后按照说明的改c
原创
发布博客 2020.11.23 ·
1366 阅读 ·
1 点赞 ·
3 评论

ImportError: libcudnn.so.8: cannot open shared object file: No such file or directory

csdn了好几天,都没有这个问题的解决方法,我来占个坑,等我解决了再来补充。当然如果有大佬知道怎么解决,还望告知一下,我已经要秃了……背景:最近在部署tensorRT,然后找了教程进行安装部署。cuda是10.2.89ubuntu是16.04cudnn是7.65然后下载了对应的tar版本的tensorRT解压版。然后解压,然后添加环境,然后install tensorrt啊,然后uff啊……然后然后,明明就这么简单的几个命令,居然一致出bug。问题:我在根目录下 ,进入python
原创
发布博客 2020.11.22 ·
4637 阅读 ·
0 点赞 ·
3 评论
加载更多