线段树入门

区间查询:

 询问某段区间的某些性质(极值,求和,etc)

区间更新:

 某些操作影响了某段区间(统一加一个值。。。)

三个问题:

  a 更新点,查询区间

  b 更新区间,查询点

  c更新区间,查询区间

  

画一个图完全理解线段树:

 

建立线段树:

void build(int i,int l,int r)//为区间[l,r]建立一个以i为祖先的线段树,i为数组下标
{
    node[i].l=l;//写入第i个结点中的 左区间
    node[i].r=r;//写入第i个结点中的 右区间
    node[i].value=0;//每个区间初始化为0
    if(l==r){//当区间长度为0时,结束递归
       father[l]=i;//能知道某个点对应的序号,为了更新的时候从下往上一直到顶
       return ;
    }
    //递归建立线段树
    build(i<<1,l,(int)floor((r+l)/2.0));
    build((i<<1)+1,(int)floor((r+l)/2.0)+1,r);
}

 

更新线段树的其中一个点

void updata(int ri)//从下往上更新(这个点本身已经在函数外更新过了)
{
    if(ri==1) return ;//向上已经找到了祖先
    int fi=ri/2;//ri的父节点
    int a=node[fi<<1].value;//该父节点的俩个孩子结点
    int b=node[(fi<<1)+1].value;
    node[fi].value=(a>b)?(a):(b);//更新这个父节点
    updata(ri/2);
}

 

查询线段树

void query(int i,int l,int r)//i为区间的序号(对应的区间是最大范围的那个区间)
{
    if(node[i].l==l&&node[i].r==r)//找到了一个完全重合的区间
    {
        Maxx=(Max<node[i].value)?node[i].value:Max;
        return;
    }
    i=i<<1;
    if(l<=node[i].r){//左区间有涉及
        if(r<=node[i].r)//全包含于左区间,则查询的区间形态不变
            query(i,l,r);
        else//包含于左区间,则查询区间拆分,左端点不变,右端点变为左孩子的右区间端点
            query(i,l,node[i].r);
    }
    i++;
    if(r>=node[i].l){//右区间有涉及
        if(l>=node[i].l)//全包含于右区间,则查询区间形态不变
            query(i,l,r);
        else //包含于左区间,则查询区间拆分,与上 同理
            query(i,node[i].l,r);
    }
}

这种类型对应的题目:题目1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
大学生参加学科竞赛有着诸多好处,不仅有助于个人综合素质的提升,还能为未来职业发展奠定良好基础。以下是一些分析: 首先,学科竞赛是提高专业知识和技能水平的有效途径。通过参与竞赛,学生不仅能够深入学习相关专业知识,还能够接触到最新的科研成果和技术发展趋势。这有助于拓展学生的学科视野,使其对专业领域有更深刻的理解。在竞赛过程中,学生通常需要解决实际问题,这锻炼了他们独立思考和解决问题的能力。 其次,学科竞赛培养了学生的团队合作精神。许多竞赛项目需要团队协作来完成,这促使学生学会有效地与他人合作、协调分工。在团队合作中,学生们能够学到如何有效沟通、共同制定目标和分工合作,这对于日后进入职场具有重要意义。 此外,学科竞赛是提高学生综合能力的一种途径。竞赛项目通常会涉及到理论知识、实际操作和创新思维等多个方面,要求参赛者具备全面的素质。在竞赛过程中,学生不仅需要展现自己的专业知识,还需要具备创新意识和解决问题的能力。这种全面的综合能力培养对于未来从事各类职业都具有积极作用。 此外,学科竞赛可以为学生提供展示自我、树立信心的机会。通过比赛的舞台,学生有机会展现自己在专业领域的优势,得到他人的认可和赞誉。这对于培养学生的自信心和自我价值感非常重要,有助于他们更加积极主动地投入学习和未来的职业生涯。 最后,学科竞赛对于个人职业发展具有积极的助推作用。在竞赛中脱颖而出的学生通常能够引起企业、研究机构等用人单位的关注。获得竞赛奖项不仅可以作为个人履历的亮点,还可以为进入理想的工作岗位提供有力的支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值