1343:【例4-2】牛的旅行

【题目描述】

农民John的农场里有很多牧区。有的路径连接一些特定的牧区。一片所有连通的牧区称为一个牧场。但是就目前而言,你能看到至少有两个牧区不连通。现在,John想在农场里添加一条路径 ( 注意,恰好一条 )。对这条路径有这样的限制:一个牧场的直径就是牧场中最远的两个牧区的距离 ( 本题中所提到的所有距离指的都是最短的距离 )。考虑如下的两个牧场,图1是有5个牧区的牧场,牧区用“*”表示,路径用直线表示。每一个牧区都有自己的坐标:

图1所示的牧场的直径大约是12.07106, 最远的两个牧区是A和E,它们之间的最短路径是A-B-E。

这两个牧场都在John的农场上。John将会在两个牧场中各选一个牧区,然后用一条路径连起来,使得连通后这个新的更大的牧场有最小的直径。注意,如果两条路径中途相交,我们不认为它们是连通的。只有两条路径在同一个牧区相交,我们才认为它们是连通的。

现在请你编程找出一条连接两个不同牧场的路径,使得连上这条路径后,这个更大的新牧场有最小的直径。

【输入】

第 1 行:一个整数N (1 ≤ N ≤ 150), 表示牧区数;

第 2 到 N+1 行:每行两个整数X,Y ( 0 ≤ X,Y≤ 100000 ), 表示N个牧区的坐标。每个牧区的坐标都是不一样的。

第 N+2 行到第 2*N+1 行:每行包括N个数字 ( 0或1 ) 表示一个对称邻接矩阵。

例如,题目描述中的两个牧场的矩阵描述如下:

 

 A B C D E F G H 
A 0 1 0 0 0 0 0 0 
B 1 0 1 1 1 0 0 0 
C 0 1 0 0 1 0 0 0 
D 0 1 0 0 1 0 0 0 
E 0 1 1 1 0 0 0 0 
F 0 0 0 0 0 0 1 0 
G 0 0 0 0 0 1 0 1 
H 0 0 0 0 0 0 1 0

 

输入数据中至少包括两个不连通的牧区。

【输出】

只有一行,包括一个实数,表示所求答案。数字保留六位小数。

【输入样例】

8
10 10
15 10
20 10
15 15
20 15
30 15
25 10
30 10
01000000
10111000
01001000
01001000
01110000
00000010
00000101
00000010

【输出样例】

22.071068

这题提交有点坑 

思路:

用floy求出任俩点间的最短路,然后求出每个点到所有可达的点的最大距离,记做mdis(i)

r1=max(mdis[i])

然后枚举不连通的俩点i,j,把他们连通 注意这里是求最小值 r2

然后在比较r1,和r2 求最大值 (因为求的是直径)

#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
//const double INF=0x3f3f3f3f;
double mapp[200][200];
double mdis[200];
int n;
int x[1001];
int y[1001];


void floy()
{
    for(int k=1;k<=n;k++){
        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                if(mapp[i][j]>mapp[i][k]+mapp[k][j]&&(i!=j)&&(i!=k)&&(j!=k)){
                    mapp[i][j]=mapp[i][k]+mapp[k][j];
                }
            }
        }
    }
}


double f(int x1,int y1,int x2,int y2)
{
    return sqrt(double((x1-x2)*(x1-x2))+double((y1-y2)*(y1-y2)));
}
int main()
{
    cin>>n;
    for(int i=1;i<=n;i++) cin>>x[i]>>y[i];
    
    char s[1000][1000];
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            cin>>s[i][j];
            if(s[i][j]=='1')
            {
                mapp[i][j]=f(x[i],y[i],x[j],y[j]);
                mapp[j][i]=f(x[i],y[i],x[j],y[j]);
            }

            else{
                mapp[i][j]=INF;
                mapp[j][i]=INF;
            }


        }
    }

    floy();


   memset(mdis,0,sizeof(mdis));
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            if(mapp[i][j]<INF&&(i!=j)&&(mapp[i][j]>mdis[i]))
                mdis[i]=mapp[i][j];

        }
    }


    double minn=INF;
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            if(mapp[i][j]==INF&&(i!=j)&&(mdis[i]+mdis[j]+f(x[i],y[i],x[j],y[j])<minn)){
                minn=mdis[i]+mdis[j]+f(x[i],y[i],x[j],y[j]);
            }
        }
    }


    for(int i=1;i<=n;i++){
        if(mdis[i]>minn) minn=mdis[i];
    }

    printf("%.6f\n",minn);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值