【题目描述】
农民John的农场里有很多牧区。有的路径连接一些特定的牧区。一片所有连通的牧区称为一个牧场。但是就目前而言,你能看到至少有两个牧区不连通。现在,John想在农场里添加一条路径 ( 注意,恰好一条 )。对这条路径有这样的限制:一个牧场的直径就是牧场中最远的两个牧区的距离 ( 本题中所提到的所有距离指的都是最短的距离 )。考虑如下的两个牧场,图1是有5个牧区的牧场,牧区用“*”表示,路径用直线表示。每一个牧区都有自己的坐标:
图1所示的牧场的直径大约是12.07106, 最远的两个牧区是A和E,它们之间的最短路径是A-B-E。
这两个牧场都在John的农场上。John将会在两个牧场中各选一个牧区,然后用一条路径连起来,使得连通后这个新的更大的牧场有最小的直径。注意,如果两条路径中途相交,我们不认为它们是连通的。只有两条路径在同一个牧区相交,我们才认为它们是连通的。
现在请你编程找出一条连接两个不同牧场的路径,使得连上这条路径后,这个更大的新牧场有最小的直径。
【输入】
第 1 行:一个整数N (1 ≤ N ≤ 150), 表示牧区数;
第 2 到 N+1 行:每行两个整数X,Y ( 0 ≤ X,Y≤ 100000 ), 表示N个牧区的坐标。每个牧区的坐标都是不一样的。
第 N+2 行到第 2*N+1 行:每行包括N个数字 ( 0或1 ) 表示一个对称邻接矩阵。
例如,题目描述中的两个牧场的矩阵描述如下:
A B C D E F G H A 0 1 0 0 0 0 0 0 B 1 0 1 1 1 0 0 0 C 0 1 0 0 1 0 0 0 D 0 1 0 0 1 0 0 0 E 0 1 1 1 0 0 0 0 F 0 0 0 0 0 0 1 0 G 0 0 0 0 0 1 0 1 H 0 0 0 0 0 0 1 0
输入数据中至少包括两个不连通的牧区。
【输出】
只有一行,包括一个实数,表示所求答案。数字保留六位小数。
【输入样例】
8 10 10 15 10 20 10 15 15 20 15 30 15 25 10 30 10 01000000 10111000 01001000 01001000 01110000 00000010 00000101 00000010
【输出样例】
22.071068
这题提交有点坑
思路:
用floy求出任俩点间的最短路,然后求出每个点到所有可达的点的最大距离,记做mdis(i)
r1=max(mdis[i])
然后枚举不连通的俩点i,j,把他们连通 注意这里是求最小值 r2
然后在比较r1,和r2 求最大值 (因为求的是直径)
#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
//const double INF=0x3f3f3f3f;
double mapp[200][200];
double mdis[200];
int n;
int x[1001];
int y[1001];
void floy()
{
for(int k=1;k<=n;k++){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(mapp[i][j]>mapp[i][k]+mapp[k][j]&&(i!=j)&&(i!=k)&&(j!=k)){
mapp[i][j]=mapp[i][k]+mapp[k][j];
}
}
}
}
}
double f(int x1,int y1,int x2,int y2)
{
return sqrt(double((x1-x2)*(x1-x2))+double((y1-y2)*(y1-y2)));
}
int main()
{
cin>>n;
for(int i=1;i<=n;i++) cin>>x[i]>>y[i];
char s[1000][1000];
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
cin>>s[i][j];
if(s[i][j]=='1')
{
mapp[i][j]=f(x[i],y[i],x[j],y[j]);
mapp[j][i]=f(x[i],y[i],x[j],y[j]);
}
else{
mapp[i][j]=INF;
mapp[j][i]=INF;
}
}
}
floy();
memset(mdis,0,sizeof(mdis));
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(mapp[i][j]<INF&&(i!=j)&&(mapp[i][j]>mdis[i]))
mdis[i]=mapp[i][j];
}
}
double minn=INF;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(mapp[i][j]==INF&&(i!=j)&&(mdis[i]+mdis[j]+f(x[i],y[i],x[j],y[j])<minn)){
minn=mdis[i]+mdis[j]+f(x[i],y[i],x[j],y[j]);
}
}
}
for(int i=1;i<=n;i++){
if(mdis[i]>minn) minn=mdis[i];
}
printf("%.6f\n",minn);
return 0;
}