数学建模学习之时间序列ARIMA模型

本文深入探讨了ARIMA模型在时间序列分析中的应用,包括模型的基本原理、参数确定、平稳性检验以及差分法的使用。介绍了自回归模型(AR)、移动平均模型(MA)以及自回归移动平均模型(ARMA),并讲解了如何通过ARIMA模型进行预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数学建模 day02 时间序列ARIMA模型及预测

ARIMA

如预测股票未来的走势,从已有的降水量来预测未来时间内的降水量

平稳性

要求数据的内部是有平稳性的: 及 加入我们根据一年的降水量数据来预测未来一个月的降水量,它们之间必然是满足一定关系的
数据的内部必须具有平稳性,我们才可以进行预测
当然均值和方差可以发生变化,但只要变化不大就可以近似于满足平稳性
在这里插入图片描述

严平稳和若平稳

一般情况下,实际中的数据都是若平稳,与过去的信息具有一定的依赖关系在这里插入图片描述
那么如何是的数据满足平稳性呢,下面就介绍一种方法:差分法

差分法

差分法算的不是真实的数据,而是计算t 与 t-1时刻的差值,如下图,这样操作之后会是的数据更加平稳
在这里插入图片描述
二阶差分就是在一阶差分的基础上再进行一次一阶差分,通常差分的阶数根据数据来决定

自回归模型(AR)

我们之前学过的回归模型是研究一个变量与另一个变量之间的具体依赖关系
这里的自回归模型很显然研究的是自己的,因为时间序列的特殊,未来的时间与历史的时间之间具有一定的依赖关系,下图就显示了自回归模型AR
下图都比较好懂,可能公式会有点难理解
累加代表的就是未来一天的数据可能与前1,2,3,4…天的数据都有关,p就代表跟前几阶的数据有关
在这里插入图片描述
在这里插入图片描述

移动平均模型(MA)

关注自回归模型中的误差项
功能如下图,这里是q阶的
在这里插入图片描述

自回归移动平均模型 ARMA

我们所讲的ARIMA模型就是一个这样的模型,其中的i代表一开始的ti-ti-1的操作
我们只需要指定p,d,q三个参数就可以了
d就是做几阶差分,一般都是一阶,q和p在前面已经介绍过了
在这里插入图片描述

ARIMA模型

结合之前讲的一些模型,看看下图就不难了
在这里插入图片描述

自相关系数ACF

在这里插入图片描述

PACF偏自相关函数

之前算ACF的时候我们算的不是单纯的x(t)与x(t-k)之间的关系,它还包含了其他的一些影响
而PACF他剔除了这些因素的影响
在这里插入图片描述

参数确定

在这里插入图片描述

ARIMA建模流程

在这里插入图片描述

模型评估

越低越好
在这里插入图片描述
python实现可以看这个网站
时间序列与时间序列分析

### 使用ARIMA模型进行时间序列预测 #### 准备工作 为了利用ARIMA模型进行有效的时间序列预测,需先理解该模型的基础构成及其参数设置。ARIMA模型由三个主要组件构成:自回归(AR)、差分(I)以及移动平均(MA)[^1]。 #### 参数设定 ARIMA模型通常表示为`ARIMA(p,d,q)`的形式,这里的`p`, `d`, 和`q`分别代表了自回归项的数量、数据经过几次差分达到平稳状态以及移动平均项的数量[^2]。 #### Python代码实现 下面是一个简单的例子来展示如何使用Python中的`statsmodels`库来进行基于ARIMA模型时间序列预测: ```python from statsmodels.tsa.arima.model import ARIMA import pandas as pd # 加载数据集并转换成适合使用的格式 data = pd.read_csv('path_to_your_data.csv') # 替换为实际路径 series = data['target_column'] # 设定目标列名 # 定义ARIMA模型实例化对象,并指定具体的(p,d,q)值 model = ARIMA(series, order=(1, 1, 1)) # 训练模型 model_fit = model.fit() # 输出训练后的摘要信息 print(model_fit.summary()) # 进行未来n步的预测 forecast_steps = 10 # 预测未来的步数 predictions = model_fit.forecast(steps=forecast_steps) # 打印预测结果 for i in range(len(predictions)): print(f'Forecast {i+1}: {predictions[i]}') ``` 这段代码展示了从加载数据到定义模型直至做出预测的整体流程。需要注意的是,在应用此方法之前应该确保所选的数据已经过适当预处理(比如去除异常值),并且通过ACF/PACF图或其他统计测试确认合适的`(p,d,q)`组合[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Joker-Tong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值