LightOJ 1336

博客探讨了如何确定1到n中约数和(σ(x))为偶数的个数,通过分析素数分解和奇偶性原理,得出结论:当n为完全平方数或2倍完全平方数时,σ(n)为奇数。答案是n减去小于等于n的完全平方数数量再减去小于等于2n的完全平方数数量。
摘要由CSDN通过智能技术生成

LightOJ 1336

题目:求1-n中 σ ( x ) \sigma(x) σ(x)为偶数的个数,其中 σ \sigma σ为约数和函数。

对任意正整数n有, n = p 1 a 1 p 2 a 2 p 3 a 3 . . . p n a n n=p_1^{a_1}p_2^{a_2}p_3^{a_3}...p_n^{a_n} n=p1a1p2a2p3a3...pnan
σ ( n ) = ( 1 + p 1 + p 1 2 + . . . + p 1 a 1 ) ( 1 + p 2 + p 2 2 + . . . + p 2 a 2 ) . . . ( 1 + p n + p n 2 + . . . + p n a n ) \sigma(n)=(1+p_1+p_1^2+...+p_1^{a_1})(1+p_2+p_2^2+...+p_2^{a_2})...(1+p_n+p_n^2+...+p_n^{a_n}) σ(n)=(1+p1+p1</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值