LightOJ 1336
题目:求1-n中 σ ( x ) \sigma(x) σ(x)为偶数的个数,其中 σ \sigma σ为约数和函数。
对任意正整数n有, n = p 1 a 1 p 2 a 2 p 3 a 3 . . . p n a n n=p_1^{a_1}p_2^{a_2}p_3^{a_3}...p_n^{a_n} n=p1a1p2a2p3a3...pnan
σ ( n ) = ( 1 + p 1 + p 1 2 + . . . + p 1 a 1 ) ( 1 + p 2 + p 2 2 + . . . + p 2 a 2 ) . . . ( 1 + p n + p n 2 + . . . + p n a n ) \sigma(n)=(1+p_1+p_1^2+...+p_1^{a_1})(1+p_2+p_2^2+...+p_2^{a_2})...(1+p_n+p_n^2+...+p_n^{a_n}) σ(n)=(1+p1+p1</