LightOJ 1336

博客探讨了如何确定1到n中约数和(σ(x))为偶数的个数,通过分析素数分解和奇偶性原理,得出结论:当n为完全平方数或2倍完全平方数时,σ(n)为奇数。答案是n减去小于等于n的完全平方数数量再减去小于等于2n的完全平方数数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LightOJ 1336

题目:求1-n中 σ ( x ) \sigma(x) σ(x)为偶数的个数,其中 σ \sigma σ为约数和函数。

对任意正整数n有, n = p 1 a 1 p 2 a 2 p 3 a 3 . . . p n a n n=p_1^{a_1}p_2^{a_2}p_3^{a_3}...p_n^{a_n} n=p1a1p2a2p3a3...pnan
σ ( n ) = ( 1 + p 1 + p 1 2 + . . . + p 1 a 1 ) ( 1 + p 2 + p 2 2 + . . . + p 2 a 2 ) . . . ( 1 + p n + p n 2 + . . . + p n a n ) \sigma(n)=(1+p_1+p_1^2+...+p_1^{a_1})(1+p_2+p_2^2+...+p_2^{a_2})...(1+p_n+p_n^2+...+p_n^{a_n}) σ(n)=(1+p1+p12+...+p1a1)(1+p2+p22+...+p2a2)...(1+pn+pn2+...+pnan)

p i = 2 p_i=2 pi=2,则 ( 1 + 2 + 2 2 + . . + 2 a i ) (1+2+2^2+..+2^{a_i}) (1+2+22+..+2ai)一定为奇数
p i > 2 p_i>2 pi>2,则当且仅当 a i a_i ai为偶数时, ( 1 + p i + p i 2 + . . . + p i a i ) (1+p_i+p_i^2+...+p_i^{a_i}) (1+pi+pi2+...+piai)。因为除了2之外的素数都是奇数,奇数个奇数相加为奇数,偶数个奇数相加为偶数。

奇数相乘仍为奇数,奇数乘偶数为偶数。

若想让 σ ( n ) \sigma(n) σ(n)为奇数,则 n = p 1 a 1 p 2 a 2 p 3 a 3 . . . p n a n n=p_1^{a_1}p_2^{a_2}p_3^{a_3}...p_n^{a_n} n=p1a1p2a2p3a3...pnan p i > 2 p_i>2 pi>2的每项 a i a_i ai都要是偶数。
现考虑包含素因子2的情况
1、若 p 1 = 2 p_1=2 p1=2 a 1 a_1 a1为偶数,那么n一定是完全平方数。
2、若 p 1 = 2 p_1=2 p1=2 a 1 a_1 a1为奇数,那么n一定可以表示为完全平方数*2。
3、若 p 1 > 2 p_1>2 p1>2,那么n一定是完全平方数。

所以 σ ( n ) \sigma(n) σ(n)为奇数当且仅当 n = x 2 n=x^2 n=x2 n = 2 x 2 n=2x^2 n=2x2。所以1-n中 σ ( n ) \sigma(n) σ(n)为奇数的个数为 n u m = n + n 2 num=\sqrt n+\sqrt{\frac{n}{2}} num=n +2n

题目的答案即为 n − ⌊ n ⌋ − ⌊ n 2 ⌋ n-\lfloor\sqrt n\rfloor-\lfloor\sqrt{\frac{n}{2}}\rfloor nn 2n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值