LightOJ 1336
题目:求1-n中 σ ( x ) \sigma(x) σ(x)为偶数的个数,其中 σ \sigma σ为约数和函数。
对任意正整数n有,
n
=
p
1
a
1
p
2
a
2
p
3
a
3
.
.
.
p
n
a
n
n=p_1^{a_1}p_2^{a_2}p_3^{a_3}...p_n^{a_n}
n=p1a1p2a2p3a3...pnan
σ
(
n
)
=
(
1
+
p
1
+
p
1
2
+
.
.
.
+
p
1
a
1
)
(
1
+
p
2
+
p
2
2
+
.
.
.
+
p
2
a
2
)
.
.
.
(
1
+
p
n
+
p
n
2
+
.
.
.
+
p
n
a
n
)
\sigma(n)=(1+p_1+p_1^2+...+p_1^{a_1})(1+p_2+p_2^2+...+p_2^{a_2})...(1+p_n+p_n^2+...+p_n^{a_n})
σ(n)=(1+p1+p12+...+p1a1)(1+p2+p22+...+p2a2)...(1+pn+pn2+...+pnan)
若
p
i
=
2
p_i=2
pi=2,则
(
1
+
2
+
2
2
+
.
.
+
2
a
i
)
(1+2+2^2+..+2^{a_i})
(1+2+22+..+2ai)一定为奇数
若
p
i
>
2
p_i>2
pi>2,则当且仅当
a
i
a_i
ai为偶数时,
(
1
+
p
i
+
p
i
2
+
.
.
.
+
p
i
a
i
)
(1+p_i+p_i^2+...+p_i^{a_i})
(1+pi+pi2+...+piai)。因为除了2之外的素数都是奇数,奇数个奇数相加为奇数,偶数个奇数相加为偶数。
奇数相乘仍为奇数,奇数乘偶数为偶数。
若想让
σ
(
n
)
\sigma(n)
σ(n)为奇数,则
n
=
p
1
a
1
p
2
a
2
p
3
a
3
.
.
.
p
n
a
n
n=p_1^{a_1}p_2^{a_2}p_3^{a_3}...p_n^{a_n}
n=p1a1p2a2p3a3...pnan中
p
i
>
2
p_i>2
pi>2的每项
a
i
a_i
ai都要是偶数。
现考虑包含素因子2的情况
1、若
p
1
=
2
p_1=2
p1=2且
a
1
a_1
a1为偶数,那么n一定是完全平方数。
2、若
p
1
=
2
p_1=2
p1=2且
a
1
a_1
a1为奇数,那么n一定可以表示为完全平方数*2。
3、若
p
1
>
2
p_1>2
p1>2,那么n一定是完全平方数。
所以 σ ( n ) \sigma(n) σ(n)为奇数当且仅当 n = x 2 n=x^2 n=x2或 n = 2 x 2 n=2x^2 n=2x2。所以1-n中 σ ( n ) \sigma(n) σ(n)为奇数的个数为 n u m = n + n 2 num=\sqrt n+\sqrt{\frac{n}{2}} num=n+2n。
题目的答案即为 n − ⌊ n ⌋ − ⌊ n 2 ⌋ n-\lfloor\sqrt n\rfloor-\lfloor\sqrt{\frac{n}{2}}\rfloor n−⌊n⌋−⌊2n⌋