Matplotlib 是一个功能强大的 Python 绘图库,用于生成高质量的图形和可视化。它广泛应用于数据科学、机器学习、科学计算和工程等领域,支持各种类型的图表和可视化形式。以下是 Matplotlib 的主要特点、基础用法和应用场景的介绍。
一、主要特点
1. 多样的图表类型
Matplotlib 支持线图、散点图、柱状图、饼图、直方图、热图、3D 图等多种类型的图表。
2. 灵活性和可定制性
用户可以对图表的各个方面进行高度自定义,包括颜色、标签、线条样式、刻度、网格、注释等。
3. 与 NumPy 和 Pandas 的兼容性
Matplotlib 与 NumPy 数组和 Pandas DataFrame 的兼容,使得处理和可视化数据变得更加简单和方便。
4. 交互式绘图
提供与用户的交互功能,如缩放、平移和图形保存,适用于 Jupyter Notebook 环境。
5. 多种输出格式
能够将图形导出为多种格式,如 PNG、PDF、SVG 和 EPS。
二、基础用法
以下是使用 Matplotlib 的一些基本示例:
1. 安装 Matplotlib
如果尚未安装,您可以使用 pip 进行安装:
pip install matplotlib
2. 基本文本示例
需求:画出某城市11点到12点1小时内每分钟的温度变化折线图
示例1:基础图绘制
# 需求:画出某城市11点到12点1小时内每分钟的温度变化折线图
import matplotlib.pyplot as plt
import random
from pylab import mpl
# 设置显示中文字体
mpl.rcParams["font.sans-serif"] = ["SimHei"]
# 设置正常显示符号
mpl.rcParams["axes.unicode_minus"] = False
# 0.准备x,y 坐标的数据
x = range(60)
y_guangxi = [random.uniform(15,18) for i in x]
# 1.创建画布
plt.figure(figsize=(20,8),dpi=80)
# 2.绘制折线图
plt.plot(x,y_guangxi)
# 2.1 自定义x,y刻度
# 构造x刻度标签
x_ticks_label = ["11:{}".format(i) for i in x]
# 构造y刻度
y_ticks = range(40)
# 修改x,y轴坐标的刻度显示
plt.xticks(x[::5],x_ticks_label[::5])
plt.yticks(y_ticks[::5])
# 2.2 添加x,y轴描述坐标
plt.xlabel("time",fontsize=15)
plt.ylabel("temperature",fontsize=15)
# 2.3 添加标题
plt.title('Temperature change between 11:00am and 12:00 PM',fontsize=20)
# 2.4 添加网格显示
plt.grid(True,linestyle="--",alpha=1)
# 2.5 保存图片
plt.savefig("./text.png")
# 3.显示图像
plt.show()
示例2:绘制多个图像
# 画出温度变化图
# 0.准备x,y 坐标的数据
x = range(60)
y_guangxi = [random.uniform(15,18) for i in x]
y_guizhou = [random.uniform(5,10) for i in x]
# 1.创建画布
plt.figure(figsize=(20,8),dpi=80)
# 2.绘制折线图
plt.plot(x,y_guangxi)
plt.plot(x,y_guizhou)
# 2.1 自定义x,y刻度
# 构造x刻度标签
x_ticks_label = ["11:{}".format(i) for i in x]
# 构造y刻度
y_ticks = range(40)
# 修改x,y轴坐标的刻度显示
plt.xticks(x[::5],x_ticks_label[::5])
plt.yticks(y_ticks[::5])
# 2.2 添加x,y轴描述坐标
plt.xlabel("time",fontsize=15)
plt.ylabel("temperature",fontsize=15)
# 2.3 添加标题
plt.title('Temperature change between 11:00am and 12:00 PM',fontsize=20)
# 2.4 添加网格显示
plt.grid(True,linestyle="--",alpha=1)
# 2.5 保存图片
plt.savefig("./text.png")
# 3.显示图像
plt.show()
示例3:多坐标系实现绘图
# 画出温度变化图
# 0.准备x,y 坐标的数据
x = range(60)
y_guangxi = [random.uniform(15,18) for i in x]
y_guizhou = [random.uniform(5,10) for i in x]
# 1.创建画布
fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(20,8),dpi=100)
# 2.绘制折线图
# plt.plot(x,y_guangxi,color='r',linestyle='-.',label='gx')
# plt.plot(x,y_guizhou,color='g',linestyle='-',label='gz')
axes[0].plot(x,y_guangxi,color='r',linestyle='-.',label='gx')
axes[1].plot(x,y_guizhou,color='g',linestyle='-',label='gz')
# 2.1 自定义x,y刻度
# 构造x刻度标签
x_ticks_label = ["11:{}".format(i) for i in x]
# 构造y刻度
y_ticks = range(40)
# 修改x,y轴坐标的刻度显示
axes[0].set_xticks(x[::5])
axes[0].set_yticks(y_ticks[::5])
axes[0].set_xticklabels(x_ticks_label[::5])
axes[1].set_xticks(x[::5])
axes[1].set_yticks(y_ticks[::5])
axes[1].set_xticklabels(x_ticks_label[::5])
# 2.2 添加x,y轴描述坐标
axes[0].set_xlabel("time",fontsize=15)
axes[0].set_ylabel("temperature",fontsize=15)
axes[1].set_xlabel("time",fontsize=15)
axes[1].set_ylabel("temperature",fontsize=15)
# 2.3 添加标题
axes[0].set_title('Temperature change between 11:00am and 12:00 PM',fontsize=20)
axes[1].set_title('Temperature change between 11:00am and 12:00 PM',fontsize=20)
# 2.4 添加网格显示
axes[0].grid(True,linestyle="--",alpha=1)
axes[1].grid(True,linestyle="--",alpha=1)
# 2.5 保存图片
plt.savefig("./text.png")
# 2.6 显示图例
axes[0].legend(loc='best')
axes[1].legend(loc='best')
# 3.显示图像
plt.show()
3. 其他图表类型
3.1 散点图
需求:探究房屋面积和房屋价格的关系
# 需求:探究房屋面积和房屋价格的关系
# 房屋面积数据
x = [225.98, 247.07, 253.14, 457.85, 241.58, 301.01, 20.67, 288.64,
163.56, 120.06, 207.83, 342.75, 147.9 , 53.06, 224.72, 29.51,
21.61, 483.21, 245.25, 399.25, 343.35]
# 房屋价格
y = [196.63, 203.88, 210.75, 372.74, 202.41, 247.61, 24.9 , 239.34,
140.32, 104.15, 176.84, 288.23, 128.79, 49.64, 191.74, 33.1 ,
30.74, 400.02, 205.35, 330.64, 283.45]
# 1.创建画布
plt.figure(figsize=(20,8),dpi=80)
# 2.绘制散点图
plt.scatter(x,y)
# 3.显示图像
plt.show()
3.2 柱状图
需求-对比每部电影的票房收入
# 需求-对比每部电影的票房收入
# 0.数据准备
# 电影名字
movie_name = ['leisheng3:wukong','yaosheng','dongfang','xiyouji','kuangbiao','renzajiongtu','zuibu','qishiqitian','mizhan','kuangshou','qita']
# 横坐标
x = range(len(movie_name))
# 纵坐标:票房数
y = [73853,57767,22354,15969,14839,8725,8716,8318,7916,6764,52222]
# 1.创建画布
plt.figure(figsize=(20,8),dpi=80)
# 2.绘制柱状图
plt.bar(x,y,width=0.5,color=['b','r','g','y','c','m','y','k','c','g','b'])
# 2.1 修改x轴的刻度显示
plt.xticks(x,movie_name)
# 3.显示
plt.show()
三、应用场景
1. 数据分析与可视化
数据科学家常使用 Matplotlib 来可视化数据集中的模式和趋势。
2. 科学与工程计算
用于绘制实验结果、理论模型及其比较,帮助研究人员分析数据。
3. 机器学习
可视化机器学习模型的表现,如绘制决策边界、收敛过程或混淆矩阵等。
4. 教育和教学
在课程中使用可视化帮助学生理解复杂概念和数据。
四、提示
使用 Jupyter Notebook:在 Jupyter Notebook 中使用 `%matplotlib inline` 可以直接在 Notebook 中显示图形。
API 文档:Matplotlib 有详细的 [官方文档](https://matplotlib.org/stable/contents.html),提供了全面的 API 参考和示例。
五、总结
Matplotlib 是 Python 中最流行的绘图库之一,为数据可视化提供了丰富的功能和高度的灵活性。无论是简单的图形还是复杂的可视化任务,Matplotlib 都能满足需求。