给出一个有向图,问求一个回路,使得回路上的点权之和/边权之和 最大。
【解题思路】
转:此题是对01分数规划的应用,那么首先明白01分数规划的思想.
01整数规划问题就是求解方程(a1*x1+a2*x2+..+an*xn)/(b1*x1+b2*x2+..+bn*xn)的最小值/最大值问题。其中xi = 0或1(i=1,2...n)对于此类问题我们可以通过二分来求解很接近答案的近似值。我们可以先令:
(a1*x1+a2*x2+..+an*xn)/(b1*x1+b2*x2+..+bn*xn)=L,则我们可以将此式转换为:x1*(a1-b1*L)+x2*(a2-b2*L)+...xn*(an-bn*L)=0,我们先定义一个估计值val,如果这个值使得上面的式子小于0我们就可以知道val>L,如果上式等于0,则val = L;如果大于0,则val<L,显然我们可以采用二分的思想求解次问题。
对于此题,设happy[u]为点u的欢乐值,w[u][v]为u-->v的边权值。要求的是happy[1]+happy[2]+...+happy[n] / w[1][2]+...+w[n-1][n] = ans,设ans就是所求的最大值。则移项,ans*w[u][v] - happy[v] = 0 .
建图:我们重新构造一幅图,使得边权为happy[v] - ans*w[u][v]。用SPFA算法,二分枚举ans,判断是否存在负权回路,若存在,说明ans偏小了,则增大ans,若不存在,则减小ans。
#include <iostream>
#include <string>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const double eps=1e-3;
const int inf=100000000000;
struct nod
{
int u;
int len;
int next;
}edge [5008];
int head[1014];
int cnt;
int n,m;
double weigth[1012];
void init()
{
cnt=0;
for(int i=1;i<=n;i++)
head[i]=-1;
}
void insert(int u,int v,int len)
{
edge[cnt].u=v;
edge[cnt].len=len;
edge[cnt].next=head[u];
head[u]=cnt;
cnt++;
}
bool spfa(double mid)
{
double dist[1012];
int visited[1012];
int used[1016];
int que[1002*1002];
int i, v;
double newdist;
for (i = 1; i <= n; i++)
{
dist[i] = inf;
visited[i] = false;
used[i] = 0;
}
dist[1] = 0;
int hea = 0, tail = 0;
que[tail++] = 1;
visited[1] = true;
used[1]++;
while (hea < tail)
{
int u = que[hea];
visited[u] = false;
hea++;
for(i=head[u];i!=-1;i=edge[i].next)
{
v = edge[i].u;
newdist = mid * edge[i].len - weigth[v]; //新的边权值
if (dist[u] + newdist < dist[v])
{
dist[v] = dist[u] + newdist;
if (!visited[v])
{
que[tail++] = v;
visited[v] = true;
used[v]++;
if (used[v] >= n) //有负权环路
return false;
}
}
}
}
return true; //无负权环路
}
int main()
{
while(cin >>n>>m)
{
init();
for(int i=1;i<=n;i++)
cin>>weigth[i];
for(int i=0;i<m;i++)
{
int uu,vv,cc;
cin>>uu>>vv>>cc;
insert(uu,vv,cc);
}
double mid;
double L=0;
double R=10066;
double ans=0;
while(R-L>=0.001)//二分
{
mid=(L+R)/2;
if(spfa(mid))
{
R=mid;
}
else
{
ans=mid;
L=mid;
}
}
printf("%.2lf\n",ans);
}
return 0;
}