使用python的map和reduce统计词频

曾经再一次面试中遇到一个问题,如何使用python的map和reduce统计ip地址的个数,并且实现。这个问题对于学过大数据的朋友应该很简单。当时只是给出了一个思想上正确的回答,但是是错误的。今天刚看到map-reduce的介绍所以在这里补充一下。


步骤:

1. 给出一个list对象,这里假设是单词(以简单字符串代替):

l = ["a", " b", "c", "a", "a", "c"]

2. 定义map的操作:

 def f1(a):
    return {a: 1}

3. 获取map的执行结果:

ll = map(f1, l)

[{'a': 1}, {' b': 1}, {'c': 1}, {'a': 1}, {'a': 1}, {'c': 1}]

4. 定义reduce的操作:

def f2(a, b):
     b_key = b.keys()[0]
     if a.has_key(b_key):
             a[b_key] += 1
     else:
             a[b_key] = 1
     return a

5. 执行reduce操作:

reduce(f2, ll, {})

{'a': 3, ' b': 1, 'c': 2}

是不是很简单啊。有什么问题欢迎提问。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值