本例中直接用python写一个MapReduce实例:统计输入文件的单词的词频
使用python写MapReduce的“诀窍”是利用Hadoop流的API,通过STDIN(标准输入)、STDOUT(标准输出)在Map函数和Reduce函数之间传递数据。
我们唯一需要做的是利用Python的sys.stdin读取输入数据,并把我们的输出传送给sys.stdout。Hadoop流将会帮助我们处理别的任何事情。
1、map函数(mapper.py)
#!/usr/bin/env python
import sys
for line in sys.stdin:
line = line.strip()
words = line.split()
for word in words:
print "%s\t%s" % (word, 1)
文件从STDIN读取文件。把单词切开,并把单词和词频输出STDOUT。Map脚本不会计算单词的总数,而是输出<word> 1。在我们的例子中,我们让随后的Reduce阶段做统计工作。
2、reduce函数(reducer.py)
#!/usr/bin/env python
from operator import itemgetter
import sys
current_word = None
current_count = 0
word = None
for line in sys.stdin:
line = line.strip()
word, count