数据结构时间复杂度的摊还分析(均摊法)之一:基础

本文介绍了摊还分析在评价数据结构操作平均代价中的应用,通过聚合分析、核算法和势能法三种技术,举例说明如何计算栈操作和二进制计数器递增操作的平均时间复杂度,证明在最坏情况下操作的均摊代价。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

见知乎专栏https://zhuanlan.zhihu.com/p/87355970

摊还分析用来评价某个数据结构的一系列操作的平均代价,有时可能某个操作的代价特别高,但总体上来看也并非那么糟糕,可以形象的理解为把高代价的操作“分摊”到其他操作上去了,要求的就是均摊后的平均代价。

摊还分析有三种常用的技术:聚合分析,核算法,势能法。

1.聚合分析
利用聚合分析,我们可以证明对于任意的 [公式] ,一个包含 [公式] 个操作的序列花费的总时间为 [公式] 。因此,在最坏情况下,每个操作的平均代价,或称为摊还代价为 [公式] ,即每个操作的时间复杂度为 [公式] 。

下面讲两个简单的例子来说明。

栈操作
考虑一个空栈 [公式] ,有三种操作:

PUSH(S,x):将对象x压入栈S中。
POP(S):将栈S的栈顶对象弹出,并返回该对象。对空栈调用POP会产生一个错误。
MULTIPOP(S,k):循环调用POP(S),弹出栈顶的k个元素(k<n,n为栈的最大容量)。
其中,第三种操作的伪代码如下:

MULTIPOP(S,k)
while not STACK-EMPTY(S) and k>0
POP(S)
k=k-1
那么,现在需要分析:执行n次栈操作最坏情况下的时间复杂度是多少?

分析:

单独看三个操作,前两个都是 [公式] 的,第三个是 [公式] 的。这样直观的看,最

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值