不使用框架实现卷积神经网络(Python)
之前为了对卷积神经网络有更深入的了解,结合别人的成果和自己的思考,在仅使用numpy和cv2的前提下,实现了深度卷积神经网络,并使用mnist数据集进行了训练和测试。不过速度真的非常慢,代码:https://github.com/WepLeo/cnn_without_frame。
主要参考了这两个:
自己遇到的问题
自己之前卡住的地方,有俩:一个是卷积层的反向传播,这个之前看博客推公式搞了好久;另一个是参数初始化,之前使用框架的时候没用心,导致卡了好久。怪自己之前考虑不深入。
卷积层的反向传播
这一块,看好多人都是根据前后两层的关系(conv-conv, conv-pooling…),分不同情况讨论,一直不是很理解(我觉得每一层都是独立的啊,为啥还要分情况讨论,希望有人明示),只有刘建平的博客是将每一层独立开的,才看明白。卷积层的反向传播中&