[bzoj十连测第三场 A]哈夫曼树

题目描述

这里写图片描述

期望的线性性

和的期望=期望的和。
因此计算每个节点期望贡献再加起来即可。
一个结点的期望深度与其数值大小和所在数组位置无关,因此可以一视同仁。
假设还有i颗子树,我们显然知道一个结点肯定处于一颗子树内。只有在该轮其所在子树被合并时深度才会加一,所以贡献为被合并的概率*1。被合并的概率是 i1C2i=2i
所以答案就是 (ni=1ai)(ni=22i)

#include<cstdio>
#include<algorithm>
#define fo(i,a,b) for(i=a;i<=b;i++)
using namespace std;
typedef long long ll;
const int maxn=100000+10,mo=1000000007;
int i,j,k,l,t,n,m,ans;
int quicksortmi(int x,int y){
    if (!y) return 1;
    int t=quicksortmi(x,y/2);
    t=(ll)t*t%mo;
    if (y%2) t=(ll)t*x%mo;
    return t;
}
int main(){
    freopen("huffman.in","r",stdin);freopen("huffman.out","w",stdout);
    scanf("%d",&n);
    fo(i,1,n){
        scanf("%d",&j);
        (t+=j)%=mo;
    }
    fo(i,2,n)
        (l+=(ll)quicksortmi(i,mo-2)*2%mo)%=mo;
    ans=(ll)t*l%mo;
    fo(i,2,n) ans=(ll)ans*((ll)i*(i-1)/2)%mo;
    printf("%d\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值