前言
看错题好久,怨念极深。
主要就是推染红的条件。
将速度排序是关键。
然而本题最重要的是证明区间不包含,然后做法可以很显然的得到。
题意
数轴上许多黑点,每个点都有一个方向向右的正速度。
当两个点在同一个位置上重合时,若其中一个是红色,另一个也变成红色。
保证没有相同速度或初始坐标。
现问你有多少方法染红一些点,使得无穷久后所有点都被染红。
做法
观察一个点i染红后,哪些点j会被染红?
1、
xj<xi,vj>vi
,那么j会追上i然后被染红。
2、
xj>xi,vj>vi,且vj不大于能追上i的点的最大速度
,那么这个最大速度点追上i被染红,然后追上j被染红。
3、
xj>xi,vj<vi
,那么j会被i追上然后被染红。
4、
xj<xi,vj<vi,且vj不小于能被i追上的点的最小速度
,那么这个最小速度的点被i追上染红,然后被j追上染红染红j。
容易讨论其余情况要么无需讨论,要么不会被染红。
我们现在按速度排序,对于每个点i,找到最小k使得
xk>=xi
,找到最大j使得
xj<=xi
,那么将i染红会使得区间[k,j]都被染红(可以对照上面四种情况讨论)。
而且通过讨论相邻两个x的大小关系,来得到k和j的变化方向,可以发现完全包含的情况不会存在(即
l<x<=y<r
,那么区间[l,r]完全包含[x,y])。
现在问题是用区间覆盖整个数列,可以排序DP+数据结构解决(也可以设一个良好的状态来前缀和解决)
#include<cstdio>
#include<algorithm>
#define fo(i,a,b) for(i=a;i<=b;i++)
#define fd(i,a,b) for(i=a;i>=b;i--)
using namespace std;
const int maxn=200000+10,mo=1000000007;
struct dong{
int x,v,id;
} a[maxn];
struct suan{
int l,r;
friend bool operator <(suan a,suan b){
return a.r<b.r||a.r==b.r&&a.l<b.l;
}
} b[maxn];
int tree[maxn*4],left[maxn],right[maxn],f[maxn];
int i,j,k,l,t,n,m,mi,mx,ans;
int read(){
int x=0,f=1;
char ch=getchar();
while (ch<'0'||ch>'9'){
if (ch=='-') f=-1;
ch=getchar();
}
while (ch>='0'&&ch<='9'){
x=x*10+ch-'0';
ch=getchar();
}
return x*f;
}
bool cmp(dong a,dong b){
return a.v<b.v;
}
bool cmp2(dong a,dong b){
return a.x<b.x;
}
void change(int p,int l,int r,int a,int b){
if (l==r){
(tree[p]+=b);
if (tree[p]>=mo) tree[p]-=mo;
return;
}
int mid=(l+r)/2;
if (a<=mid) change(p*2,l,mid,a,b);else change(p*2+1,mid+1,r,a,b);
tree[p]=(tree[p*2]+tree[p*2+1]);
if (tree[p]>=mo) tree[p]-=mo;
}
int query(int p,int l,int r,int a,int b){
if (l==a&&r==b) return tree[p];
int mid=(l+r)/2;
if (b<=mid) return query(p*2,l,mid,a,b);
else if (a>mid) return query(p*2+1,mid+1,r,a,b);
else{
int t=(query(p*2,l,mid,a,mid)+query(p*2+1,mid+1,r,mid+1,b));
if (t>=mo) t-=mo;
return t;
}
}
int main(){
//freopen("data.in","r",stdin);
//scanf("%d",&n);
n=read();
fo(i,1,n)
//scanf("%d%d",&a[i].x,&a[i].v);
a[i].x=read(),a[i].v=read();
sort(a+1,a+n+1,cmp);
fo(i,1,n) a[i].id=i;
sort(a+1,a+n+1,cmp2);
mi=n+1;
fd(i,n,1){
mi=min(mi,a[i].id);
left[a[i].id]=mi;
}
mx=0;
fo(i,1,n){
mx=max(mx,a[i].id);
right[a[i].id]=mx;
}
fo(i,1,n) b[i].l=left[i],b[i].r=right[i];
sort(b+1,b+n+1);
fo(i,1,n){
if (b[i].l==1) f[i]++;
t=max(b[i].l-1,1);
(f[i]+=query(1,1,n,t,b[i].r));
if (f[i]>=mo) f[i]-=mo;
change(1,1,n,b[i].r,f[i]);
if (b[i].r==n){
(ans+=f[i]);
if (ans>=mo) ans-=mo;
}
}
printf("%d\n",ans);
}