[TCO2014]FrozenStandings

版权声明:本文是蒟蒻写出来的,神犇转载也要说一声哦! https://blog.csdn.net/WerKeyTom_FTD/article/details/79676397

题目大意

有n个人,每个人有一个数字xi
现在你可以把某些人的xi加一。
问一共能造成多少本质不同的排名?
两个人中数字大的排名靠前,数字一样编号小的靠前。

做法

双关键字让我们非常难受。
考虑设一个大数w,令ri=xiw+i,然后令li=riw
那么现在就是一个人可以选择liri,问排名数。
立刻变成了单关键字。
现在我们先按照li排序,显然ri也会有序。
不妨考虑什么情况两种不同的选择方案会使得排名相同。
因为选择方案不同,不妨假设一个人i,在两种方案中一个选了li另一个选了ri
如果不存在任意一个人选择的数字在这之间,显然这个人的排名没有改变。
意味着,如果我们认为i产生了矛盾,对于所有li<lj<rili<rj<ri的这些j,他们的选择是固定的,才能使得自己不落在区间内。
因为所有liri间距相同,这样的j显然是一个区间[Li,Ri]
现在就会有一个简单的思路,枚举最小的矛盾位置i,那么i之间的都不产生矛盾,而i之后的都无所谓。
这个简单的思路,可以用更简单的做法表达:
dpk表示前k个人的方案数,即我们只确定了前k个人,要求没有人能造成矛盾(一个人造成矛盾是确定的,需要他的L与R均登场)。
转移相当简单:
dpk=dpk12Ri=kdpLi1
这样我们就解决了本题。

#include<cstdio> 
#include<algorithm>
#define fo(i,a,b) for(i=a;i<=b;i++)
using namespace std;
typedef long long ll;
const int maxn=500000+10,mo=1000000007;
class FrozenStandings{
    int X[maxn],L[maxn],R[maxn],dp[maxn];
    int h[maxn],go[maxn],nxt[maxn];
    ll lv[maxn],rv[maxn],w;
    int i,j,k,l,t,n,m,tot;
    public:
    void add(int x,int y){
        go[++tot]=y;
        nxt[tot]=h[x];
        h[x]=tot;
    }
    int countStandings(int N, int A, int seed){
        int x = seed;
        w=10000000;
        n=N;
        fo(i,1,n){
            x = (ll)x * 20142014 % 1000000007;
            X[i] = x % A;
            rv[i]=-(ll)X[i]*w+(ll)i;
        }
        sort(rv+1,rv+n+1);
        fo(i,1,n) lv[i]=rv[i]-(ll)w;
        j=k=1;
        fo(i,1,n){
            while (k<n&&lv[k+1]<=rv[i]) k++;
            while (rv[j]<lv[i]) j++;
            if (j<=k) add(k,j);
        }
        dp[0]=1;
        fo(i,1,n){
            dp[i]=(ll)dp[i-1]*2%mo;
            t=h[i];
            while (t){
                (dp[i]-=dp[go[t]-1])%=mo;
                t=nxt[t];
            }
        }
        (dp[n]+=mo)%=mo;
        return dp[n];
    }
};
阅读更多
想对作者说点什么?