Zkb

题目大意

区间排序,区间求乘积十进制下的最高位。

做法

先转化询问。
对所有数取 log10 l o g 10
那么乘法转化为加法。
设取 log l o g 后和为 x x ,答案显然是10xx
现在问题就是,区间排序,区间求和,怎么做?
可以维护若干个排序块,这个可以用平衡树维护。
每个排序块维护一颗权值线段树。
每次区间排列,分裂边缘块的线段树,再把整块的线段树合并起来,然后建立一个新的排序块。
设势函数表示线段树节点数,初始时为n log n,一次线段树分裂会增加log个线段树节点,势函数加log n。每次线段树合并若遍历 k k 个节点,势函数减少k
因此复杂度为 O(n log n) O ( n   l o g   n )
注意线段树的空间可以回收循环利用。

#include<cstdio>
#include<algorithm>
#include<cmath>
#define fo(i,a,b) for(i=a;i<=b;i++)
#define fd(i,a,b) for(i=a;i>=b;i--)
#define nxt(x) (x==n?0:x+1)
#define nt(x) (x==maxtot-10?0:x+1)
using namespace std;
typedef long double db;
const int maxn=200000+10,maxtot=15000000+10;
const db eps=1e-8;
db sum[maxtot],num[maxn],key[maxn],p[maxn];
int root[maxn],val[maxn],L[maxn],R[maxn],tree[maxn][2],father[maxn],ld[maxn],a[maxn],b[maxn];
int size[maxtot],left[maxtot],right[maxtot],dl[maxtot];
int i,j,k,l,r,x,y,t,n,m,tot,top,head,tail,hd,tl,rot,now,wdc;
db ans;
bool czy;
int read(){
    int x=0,f=1;
    char ch=getchar();
    while (ch<'0'||ch>'9'){
        if (ch=='-') f=-1;
        ch=getchar();
    }
    while (ch>='0'&&ch<='9'){
        x=x*10+ch-'0';
        ch=getchar();
    }
    return x*f;
}
bool cmp(int x,int y){
    return p[x]<p[y];
}
void insert(int &x,int l,int r,int a){
    if (!x) x=++tot;
    size[x]++;
    sum[x]+=p[a];
    if (l==r) return;
    int mid=(l+r)/2;
    if (a<=mid) insert(left[x],l,mid,a);else insert(right[x],mid+1,r,a);
}
db query(int x,int l,int r,int a,int b){
    if (a==1&&b==size[x]) return sum[x];
    int mid=(l+r)/2;
    if (size[left[x]]>=b) return query(left[x],l,mid,a,b);
    else if (size[left[x]]<a) return query(right[x],mid+1,r,a-size[left[x]],b-size[left[x]]);
    else return query(left[x],l,mid,a,size[left[x]])+query(right[x],mid+1,r,1,b-size[left[x]]);
}
db ask(int x,int l,int r){
    if (val[x]==1) l=l-L[x]+1,r=r-L[x]+1;
    else{
        l=R[x]-l+1;r=R[x]-r+1;
        swap(l,r);
    }
    return query(root[x],1,n,l,r);
}
void update(int x){
    num[x]=num[tree[x][0]]+num[tree[x][1]]+key[x];
}
int pd(int x){
    return tree[father[x]][1]==x;
}
void rotate(int x){
    int y=father[x],z=pd(x);
    father[x]=father[y];
    if (father[y]) tree[father[y]][pd(y)]=x;
    tree[y][z]=tree[x][1-z];
    if (tree[x][1-z]) father[tree[x][1-z]]=y;
    tree[x][1-z]=y;
    father[y]=x;
    update(y);
    update(x);
}
void splay(int x,int y){
    while (father[x]!=y){
        if (father[father[x]]!=y)
            if (pd(x)==pd(father[x])) rotate(father[x]);else rotate(x);
        rotate(x);
    }
}
int find(int x,int y){
    if (L[x]<=y&&y<=R[x]) return x;
    if (y<L[x]) return find(tree[x][0],y);
    else return find(tree[x][1],y);
}
void work(int l,int r,int &x,int &y){
    x=find(rot,l);
    splay(x,0);
    rot=x;
    y=find(rot,r);
    if (y!=x) splay(y,x);
}
int getid(){
    hd=nxt(hd);
    return ld[hd];
}
int getnew(){
    if (head==tail) return ++tot;
    head=nt(head);
    return dl[head];
}
int merge(int x,int y,int l,int r){
    if (!x||!y) return x+y;
    int mid=(l+r)/2;
    left[x]=merge(left[x],left[y],l,mid);
    right[x]=merge(right[x],right[y],mid+1,r);
    size[x]=size[left[x]]+size[right[x]];
    sum[x]=sum[left[x]]+sum[right[x]];
    tail=nt(tail);
    dl[tail]=y;
    return x;
}
void travel(int x){
    if (!x) return;
    tl=nxt(tl);
    ld[tl]=x;
    now=merge(now,root[x],1,n);
    travel(tree[x][0]);
    travel(tree[x][1]);
}
void cr(int &x,int y){
    if (!x){
        x=y;
        return;
    }
    if (L[y]<L[x]){
        cr(tree[x][0],y);
        father[tree[x][0]]=x;
        update(x);
    }
    else{
        cr(tree[x][1],y);
        father[tree[x][1]]=x;
        update(x);
    }
}
void del(int x){
    tl=nxt(tl);
    ld[tl]=x;
    splay(x,0);
    if (!tree[x][0]){
        if (!tree[x][1]){
            rot=0;
            return;
        }
        father[tree[x][1]]=0;
        rot=tree[x][1];
    }
    else{
        int t=tree[x][0];
        while (tree[t][1]) t=tree[t][1];
        splay(t,x);
        if (!tree[x][1]){
            father[t]=0;
            rot=t;
        }
        else{
            father[t]=0;
            father[tree[x][1]]=t;
            tree[t][1]=tree[x][1];
            update(t);
            rot=t;
        }
    }
}
void split(int x,int l,int r,int k,int &a,int &b){
    if (!k){
        a=0;
        b=x;
        return;
    }
    if (k==size[x]){
        a=x;
        b=0;
        return;
    }
    int mid=(l+r)/2;
    int nx=getnew();
    if (k<=size[left[x]]){
        split(left[x],l,mid,k,a,b);
        left[nx]=b;
        right[nx]=right[x];
        left[x]=a;
        right[x]=0;
        size[x]=size[left[x]]+size[right[x]];
        sum[x]=sum[left[x]]+sum[right[x]];
        size[nx]=size[left[nx]]+size[right[nx]];
        sum[nx]=sum[left[nx]]+sum[right[nx]];
        a=x;b=nx;
    }
    else{
        split(right[x],mid+1,r,k-size[left[x]],a,b);
        left[nx]=0;
        right[nx]=b;
        right[x]=a;
        size[x]=size[left[x]]+size[right[x]];
        sum[x]=sum[left[x]]+sum[right[x]];
        size[nx]=size[left[nx]]+size[right[nx]];
        sum[nx]=sum[left[nx]]+sum[right[nx]];
        a=x;b=nx;
    }
}
void fen(int x,int l,int r){
    int ca=val[x],LL=L[x],RR=R[x];
    int ly=l,ry=r;
    if (val[x]==1) l=l-L[x]+1,r=r-L[x]+1;
    else{
        l=R[x]-l+1;r=R[x]-r+1;
        swap(l,r);
    }
    del(x);
    if (l==1&&r==R[x]-L[x]+1){
        now=merge(now,root[x],1,n);
        return;
    }
    int lx,llx,rx,mx,k;
    split(root[x],1,n,r,lx,rx);
    split(lx,1,n,l-1,llx,mx);
    lx=llx;
    now=merge(now,mx,1,n);
    if (ca==0) swap(lx,rx);
    if (lx){
        k=getid();
        root[k]=lx;
        L[k]=LL;R[k]=ly-1;
        tree[k][0]=tree[k][1]=father[k]=0;
        key[k]=num[k]=sum[root[k]];
        val[k]=ca;
        cr(rot,k);
    }
    if (rx){
        k=getid();
        root[k]=rx;
        L[k]=ry+1;R[k]=RR;
        tree[k][0]=tree[k][1]=father[k]=0;
        key[k]=num[k]=sum[root[k]];
        val[k]=ca;
        cr(rot,k);
        splay(k,0);
        rot=k;
    }
}
void deb(int x){
    if (!x) return;
    deb(tree[x][0]);
    //printf("%d %d %d\n",x,L[x],R[x]);
    if (L[x]==wdc+1) wdc=R[x];
    else{
        czy=0;
        return;
    }
    deb(tree[x][1]);
}
int main(){
    freopen("zkb.in","r",stdin);freopen("zkb.out","w",stdout);
    n=read();m=read();
    fo(i,1,n){
        a[i]=read();
        //p[i]=log(a[i])/log(10);
        p[i]=log(a[i]);
    }
    fo(i,1,n) a[i]=i;
    sort(a+1,a+n+1,cmp);
    sort(p+1,p+n+1);
    fo(i,1,n) b[a[i]]=i;
    rot=1;
    fo(i,1,n){
        L[i]=R[i]=i;
        if (i<n) tree[i][1]=i+1;
        father[i]=i-1;
        insert(root[i],1,n,b[i]);
        num[i]=key[i]=p[b[i]];
    }
    fd(i,n-1,1) num[i]+=num[i+1];
    /*deb(rot);
    printf("\n");*/
    while (m--){
        //printf("%d\n",m);
        if (m==778){
            m=m;
        }
        t=read();
        if (t==1){
            l=read();r=read();t=read();
            work(l,r,x,y);
            now=0;
            if (x==y){
                fen(x,l,r);
                k=getid();
                root[k]=now;
                L[k]=l;R[k]=r;
                tree[k][0]=tree[k][1]=father[k]=0;
                key[k]=num[k]=sum[now];
                val[k]=t;
                cr(rot,k);
                splay(k,0);
                rot=k;
            }
            else{
                travel(tree[y][0]);
                tree[y][0]=0;
                update(y);
                update(x);
                fen(x,l,R[x]);
                fen(y,L[y],r);
                k=getid();
                root[k]=now;
                L[k]=l;R[k]=r;
                tree[k][0]=tree[k][1]=father[k]=0;
                key[k]=num[k]=sum[now];
                val[k]=t;
                cr(rot,k);
                splay(k,0);
                rot=k;
            }
            /*czy=1;wdc=0;
            deb(rot);
            if (!czy){
                printf("%d\n",m);
                break;
            }*/
        }
        else{
            l=read();r=read();
            work(l,r,x,y);
            if (x==y) ans=ask(x,l,r);
            else{
                ans=num[tree[y][0]];
                ans+=ask(x,l,R[x]);
                ans+=ask(y,L[y],r);
            }
            ans=ans/log(10);
            ans=ans-floor(ans);
            ans=pow(10,ans);
            ans+=eps;
            printf("%d\n",int(floor(ans)));
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值