《夜深人静写算法》数论篇 - (01) 整除

本文介绍了数论中的整除性质,包括整除性的任意性、传递性、可消性和组合性,并详细阐述了常见数如0、1以及2至6的整除特性。通过例题解析展示如何运用这些性质解决问题,同时提出了关于能被7、8、9整除的数的思考题。
摘要由CSDN通过智能技术生成

前言

    数论研究的是整数的性质,那么最基础的性质就是整除了,所以我们先来了解下整除的性质。

一、整除性

    若 a a a b b b 都为整数, a a a 整除 b b b 是指 b b b a a a 的倍数, a a a b b b 的约数(或者叫 因数、因子),记为 a ∣ b a|b ab。整除的大部分性质都是显而易见的,为了阐述方便,我给这些性质都起了个名字。

1、任意性

    若 a ∣ b a|b ab,则对于任意非零整数 m m m,有 a m ∣ b m am|bm ambm

2、传递性

    若 a ∣ b a|b ab b ∣ c b|c bc ,则 a ∣ c a|c ac

3、可消性

    若 a ∣ b c a|bc abc a a a c c c 互素(互素即两者没有大于一的公共因子),则 a ∣ b a|b ab

4、组合性

    若 c ∣ a c|a ca c ∣ b c|b cb,则对于任意整数 m 、 n m、n mn,有 c ∣ ( m a + n b ) c|(ma+nb) c(ma+nb)

二、常见数的整除特性

1、0的特性

    0 是任何非零整数的倍数,对于任意非零整数 a a a,必然有 a ∣ 0 a|0 a0

2、1的特性

    对于任何整数 a a a,总有 1 ∣ a 1|a 1a

3、能被 2 整除的数的特征

    若整数 a a a 的末位是 0 0 0 2 2 2 4 4 4 6 6 6 8 8 8,则 a a a 能被 2 2 2 整除。

4、能被 3 整除的数的特征

    若整数 a a a 的数字和能被 3 3 3 整除,则 a a a 能被 3 3 3 整除。

5、能被 4 整除的数的特征

    若整数 a a a 的末尾两位数能被 4 4 4 整除,则 a a a 能被 4 4 4 整除。

6、能被 5 整除的数的特征

    若整数 a a a 的末位是 0 0 0 5 5 5,则 a a a 能被 5 5 5 整除。

7、能被 6 整除的数的特征

    若整数 a a a 能被 2 2 2 3 3 3 整除,则 a a a 能被 6 6 6 整除。

三、例题解析

x , y , z x,y,z xyz 均为整数,若 11 ∣ ( 7 x + 2 y − 5 z ) 11|(7x+2y-5z) 11(7x+2y5z),求证: 11 ∣ ( 3 x − 7 y + 12 z ) 11|(3x-7y+12z) 11(3x7y+12z)

    为了描述方便,令: a = ( 7 x + 2 y − 5 z ) , b = ( 3 x − 7 y + 12 z ) a = (7x+2y-5z), b = (3x-7y+12z) a=(7x+2y5z),b=(3x7y+12z)
    通过构造,可以得到一个等式: 3 a + 4 b = 11 ∗ ( 3 x − 2 y + 3 z ) 3a + 4b = 11*(3x-2y+3z) 3a+4b=11(3x2y+3z)
    根据任意性 + 组合性,得出: 11 ∣ ( 11 ∗ ( 3 x − 2 y + 3 z ) − 3 a ) = 11 ∣ 4 b 11|(11*(3x-2y+3z) - 3a) = 11|4b 11(11(3x2y+3z)3a)=114b
    然后根据可消性,由于 11 11 11 4 4 4 互素,得出 11 ∣ b 11|b 11b,证明完毕。

四、思考题

    能被 7 7 7 整除的数应该满足什么性质?
    能被 8 8 8 整除的数应该满足什么性质?
    能被 9 9 9 整除的数应该满足什么性质?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

英雄哪里出来

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值