前言
数论研究的是整数的性质,那么最基础的性质就是整除了,所以我们先来了解下整除的性质。
一、整除性
若 a a a 和 b b b 都为整数, a a a 整除 b b b 是指 b b b 是 a a a 的倍数, a a a 是 b b b 的约数(或者叫 因数、因子),记为 a ∣ b a|b a∣b。整除的大部分性质都是显而易见的,为了阐述方便,我给这些性质都起了个名字。
1、任意性
若 a ∣ b a|b a∣b,则对于任意非零整数 m m m,有 a m ∣ b m am|bm am∣bm 。
2、传递性
若 a ∣ b a|b a∣b 且 b ∣ c b|c b∣c ,则 a ∣ c a|c a∣c 。
3、可消性
若 a ∣ b c a|bc a∣bc 且 a a a 和 c c c 互素(互素即两者没有大于一的公共因子),则 a ∣ b a|b a∣b 。
4、组合性
若 c ∣ a c|a c∣a 且 c ∣ b c|b c∣b,则对于任意整数 m 、 n m、n m、n,有 c ∣ ( m a + n b ) c|(ma+nb) c∣(ma+nb) 。
二、常见数的整除特性
1、0的特性
0 是任何非零整数的倍数,对于任意非零整数 a a a,必然有 a ∣ 0 a|0 a∣0。
2、1的特性
对于任何整数 a a a,总有 1 ∣ a 1|a 1∣a。
3、能被 2 整除的数的特征
若整数 a a a 的末位是 0 0 0、 2 2 2、 4 4 4、 6 6 6 或 8 8 8,则 a a a 能被 2 2 2 整除。
4、能被 3 整除的数的特征
若整数 a a a 的数字和能被 3 3 3 整除,则 a a a 能被 3 3 3 整除。
5、能被 4 整除的数的特征
若整数 a a a 的末尾两位数能被 4 4 4 整除,则 a a a 能被 4 4 4 整除。
6、能被 5 整除的数的特征
若整数 a a a 的末位是 0 0 0 或 5 5 5,则 a a a 能被 5 5 5 整除。
7、能被 6 整除的数的特征
若整数 a a a 能被 2 2 2 和 3 3 3 整除,则 a a a 能被 6 6 6 整除。
三、例题解析
x , y , z x,y,z x,y,z 均为整数,若 11 ∣ ( 7 x + 2 y − 5 z ) 11|(7x+2y-5z) 11∣(7x+2y−5z),求证: 11 ∣ ( 3 x − 7 y + 12 z ) 11|(3x-7y+12z) 11∣(3x−7y+12z)。
为了描述方便,令:
a
=
(
7
x
+
2
y
−
5
z
)
,
b
=
(
3
x
−
7
y
+
12
z
)
a = (7x+2y-5z), b = (3x-7y+12z)
a=(7x+2y−5z),b=(3x−7y+12z)
通过构造,可以得到一个等式:
3
a
+
4
b
=
11
∗
(
3
x
−
2
y
+
3
z
)
3a + 4b = 11*(3x-2y+3z)
3a+4b=11∗(3x−2y+3z)
根据任意性 + 组合性,得出:
11
∣
(
11
∗
(
3
x
−
2
y
+
3
z
)
−
3
a
)
=
11
∣
4
b
11|(11*(3x-2y+3z) - 3a) = 11|4b
11∣(11∗(3x−2y+3z)−3a)=11∣4b
然后根据可消性,由于
11
11
11 和
4
4
4 互素,得出
11
∣
b
11|b
11∣b,证明完毕。
四、思考题
能被
7
7
7 整除的数应该满足什么性质?
能被
8
8
8 整除的数应该满足什么性质?
能被
9
9
9 整除的数应该满足什么性质?