公考之判断推理(一)

第一章 逻辑基础知识

1.1命题:用语言、符号或者式子表达的,可以判断真假的陈述句称为命题,一般写为:若p,则q

其中判断为真的语句称为真命题,判断为假的语句称为假命题。

1.1.1命题的四种形式和关系

原命题与逆命题的真假是一致的,与否命题和逆命题真假无必然联系。

逆命题与否命题的真假是一致的,与原命题和逆否命题真假无必然联系。

1.1.2        命题的传递规则

A→B,B→C,可联立,得出A→C

A→B,C→A,可联立,得出C→A

A→B,非C→非B(逆否得出B→C),可联立,得出A→C

A→B,C→B,不可联立

A→B,A→C,不可联立

1.1.3        命题的真假判断

pqp→q

1.2        复合命题

复合命题是指由简单命题用联结词联结而成的命题。

1.2.1        联言命题(且)

联言命题是反映事物的若干种情况或者性质同时存在的命题,由逻辑联结词“并且”连接,写成p并且q。

常见指示词并且、也、还、同时、“,”等
矛盾关系非(p且q)=非p或非q
真假判断全真为真,一假则假

矛盾关系指的是二者必然一真一假,在原命题前加“不”,即得到矛盾命题。

1.2.2        选言命题

选言命题是反应事物u的若干种情况或者性质至少有一种存在的命题。可分为相容选言命题和不相容选言命题,由逻辑联结词“或者”或“要么”连接,写成p或q、要么p要么q。

1.2.2.1        相容选言命题(或者)

常见指示词或者或者、A和B至少一个、A和B至多一个
矛盾关系非(p或q)=非p且非q
真假判断一真则真,全假为假
等价规则p或q=非p→q=非q→p

注意:A和B至少一个可翻译为“A或B”

        A和B至多一个,即非A和非B至少一个,可翻译为“非A或者非B”

        等价规则可记为:“否一推一”。

1.2.2.2        不相容选言命题(要么)
常见指示词要么要么、A和B二者不可兼得、不是A就是B
矛盾关系非(要么p要么q)=(p且q)或(非p且非q)
真假判断一真一假为假,全真全假为假

1.2.3        假言命题

假言命题就是陈述某一事物情况是另一件事物情况的条件的命题,假言命题亦称条件命题。

在形式逻辑中,命题联结词“如果,则”被理解为“前件真而后件假”是假的,即“若A则B”假,当且仅当A真而B假;而当A假时,整个复合命题总是真的。在现代逻辑中,命题之间的这样的真假关系叫做实质蕴涵。

1.2.3.1关联词之如果那么

常见指示词如果....那么、若...则、只要...就、一....就、所有...都等
翻译规则前推后(若p则q,翻译为,p→q)
真假判断(p→q)当且仅当(p真q假)时为假
等价规则p→q=非q→非q=非p或q

真假判断口诀:前件为假命题为真,后件为真命题为真,当且仅当A且非B时为假

等价规则可记为:“否前或后”。

1.2.3.2        关联词之只有才

常见指示词只有...才、必须...才、才、不...不等
翻译规则

后推前(只有p才q,翻译为:q→p)

不不(只有p才q,翻译为,非p→非q)

真假判断、等价规则:翻译成“a→b”形式后,同“p箭头q”。

1.2.3.3        关联词之除非否则

常见指示词除非...否则、必须...否则、否则等
翻译规则否A则B(除非p否则q,翻译为:非p→q)
等价规则除非p否则q=非p→q=p或q

真假判断:翻译成“a→b”形式后,同“p→q”。

1.4        模态命题(可能必然)

        模态命题就是陈述事物情况的必然性或可能性的命题。

矛盾关系必然丄可能不,可能不丄 必然不
推出关系必然能退出可能,可能退不出必然
等价关系非必然=可能不,非可能=必然不

矛盾关系的记忆口诀为“两词互换,后面加不”。

上反对关系必有一假,下反对关系必有一真。

1.4        直言命题(所有有些)

直言命题亦称“定言命题”,即性质命题,是断定事物性质的简单命题。

由于在性质命题中,对对象具有或不具有某种性质的断定是直接的,无条件的。因而,逻辑史上把这种命题称为直言命题,以别于假言命题(对对象的某种断定是有条件的)和选言命题(对对象的某种断定是具有选择的)。

矛盾关系非所有=有些不,非有些=所有不
上反对关系两个所有必有一假
下反对关系两个有些必有一真
推出关系

所有→特指→有些

有些p是q→有些q是p

有些p是q推不出有些p不是q

矛盾关系的记忆口诀为“两词互换,后面加不”。

1.5        充分必要关系

对于p→q,p是充分条件,q是必要条件,若p能推出q且q能推迟p,则p、q互为充分必要条件。

常见提示词
充分条件如果....那么...、若...则...等
必要条件基础、关键、前提、必须、需要、离不开、必不可少、不可或缺等
充分必要条件当且仅当
翻译规则充分条件是p。必要条件是q

可简单记为:随是必要条件随在箭头后面。

1.6        演绎推理、归纳推理、类比推理

一般来说,推理可分为演绎推理,归纳推理和类比推理三种形式。

演绎推理:是指从一般性的前提得出了特殊性的结论的推理。演绎推理包括三段论,假言推理,选言推理等。

归纳推理:即从个别到一般,从特殊性的前提推出普遍的一般结论。归纳推理可分为完全归纳推理、不完全(简单枚举)归纳推理。

类比推理:是指从特殊性的前提得出特殊性的结论。一般情况下,这种推理基于两个或两类对象在某些属性上的相同或相似性,推断它们在其他属性上也可能相同或相似。

三段论推理:演绎推理中的一种简单推理判断。

它包含:一个一般性的原则(大前提),一个附属于前面大前提的特殊化陈述(小前提),以及由此引申出的特殊化陈述符合一般性原则的结论。

常见提示词翻译
p并且q、p和q、p同时q、p也q、p还q、p、qp且q
p或q、pq至少一个、非p非q至多一个p或q
如果p那么q、若p则q、只要p就q、一p则q、所有p都是qp→q
只有p才q、必须p才q、不p不qq→p
除非p否则q、必须p否则q、p否则q非p→q
q是p的基础/关键/前提、p离不开/必须/需要q、q必不可少/不可或缺p→q
命题表示命题为真,可推出命题为假,可推出真假判断
联言命题p且qp真且q真p、q至少一假

一假则假

全真为真

选言命题相容选言命题p或qp、q至少一真p、q均为假

一真则真

全假则假

不相容选言命题

要么p

要么q

p、q一真一假

p、q全假

或p、q全真

一真一假为真

全真全假为假

假言命题如果那么p→q

p真q真

或p假q真

或p假q假

p真q真

p假,命题为真

q真,命题为真

当且仅当p且非q时为假

只有才
除非否则
命题表示推出关系矛盾关系
直言命题所有、有些、特指所有→特指→有些两词互换,后面加不
模态命题可能、必然必然→可能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值