第一章 逻辑基础知识
1.1命题:用语言、符号或者式子表达的,可以判断真假的陈述句称为命题,一般写为:若p,则q。
其中判断为真的语句称为真命题,判断为假的语句称为假命题。
1.1.1命题的四种形式和关系
原命题与逆命题的真假是一致的,与否命题和逆命题真假无必然联系。
逆命题与否命题的真假是一致的,与原命题和逆否命题真假无必然联系。
1.1.2 命题的传递规则
A→B,B→C,可联立,得出A→C
A→B,C→A,可联立,得出C→A
A→B,非C→非B(逆否得出B→C),可联立,得出A→C
A→B,C→B,不可联立
A→B,A→C,不可联立
1.1.3 命题的真假判断
p | q | p→q |
真 | 真 | 真 |
真 | 假 | 假 |
假 | 真 | 真 |
假 | 假 | 真 |
1.2 复合命题
复合命题是指由简单命题用联结词联结而成的命题。
1.2.1 联言命题(且)
联言命题是反映事物的若干种情况或者性质同时存在的命题,由逻辑联结词“并且”连接,写成p并且q。
常见指示词 | 并且、也、还、同时、“,”等 |
矛盾关系 | 非(p且q)=非p或非q |
真假判断 | 全真为真,一假则假 |
矛盾关系指的是二者必然一真一假,在原命题前加“不”,即得到矛盾命题。
1.2.2 选言命题
选言命题是反应事物u的若干种情况或者性质至少有一种存在的命题。可分为相容选言命题和不相容选言命题,由逻辑联结词“或者”或“要么”连接,写成p或q、要么p要么q。
1.2.2.1 相容选言命题(或者)
常见指示词 | 或者或者、A和B至少一个、A和B至多一个 |
矛盾关系 | 非(p或q)=非p且非q |
真假判断 | 一真则真,全假为假 |
等价规则 | p或q=非p→q=非q→p |
注意:A和B至少一个可翻译为“A或B”
A和B至多一个,即非A和非B至少一个,可翻译为“非A或者非B”
等价规则可记为:“否一推一”。
常见指示词 | 要么要么、A和B二者不可兼得、不是A就是B |
矛盾关系 | 非(要么p要么q)=(p且q)或(非p且非q) |
真假判断 | 一真一假为假,全真全假为假 |
1.2.3 假言命题
假言命题就是陈述某一事物情况是另一件事物情况的条件的命题,假言命题亦称条件命题。
在形式逻辑中,命题联结词“如果,则”被理解为“前件真而后件假”是假的,即“若A则B”假,当且仅当A真而B假;而当A假时,整个复合命题总是真的。在现代逻辑中,命题之间的这样的真假关系叫做实质蕴涵。
1.2.3.1关联词之如果那么
常见指示词 | 如果....那么、若...则、只要...就、一....就、所有...都等 |
翻译规则 | 前推后(若p则q,翻译为,p→q) |
真假判断 | (p→q)当且仅当(p真q假)时为假 |
等价规则 | p→q=非q→非q=非p或q |
真假判断口诀:前件为假命题为真,后件为真命题为真,当且仅当A且非B时为假
等价规则可记为:“否前或后”。
1.2.3.2 关联词之只有才
常见指示词 | 只有...才、必须...才、才、不...不等 |
翻译规则 | 后推前(只有p才q,翻译为:q→p) 不不(只有p才q,翻译为,非p→非q) |
真假判断、等价规则:翻译成“a→b”形式后,同“p箭头q”。
1.2.3.3 关联词之除非否则
常见指示词 | 除非...否则、必须...否则、否则等 |
翻译规则 | 否A则B(除非p否则q,翻译为:非p→q) |
等价规则 | 除非p否则q=非p→q=p或q |
真假判断:翻译成“a→b”形式后,同“p→q”。
1.4 模态命题(可能必然)
模态命题就是陈述事物情况的必然性或可能性的命题。
矛盾关系 | 必然丄可能不,可能不丄 必然不 |
推出关系 | 必然能退出可能,可能退不出必然 |
等价关系 | 非必然=可能不,非可能=必然不 |
矛盾关系的记忆口诀为“两词互换,后面加不”。
上反对关系必有一假,下反对关系必有一真。
1.4 直言命题(所有有些)
直言命题亦称“定言命题”,即性质命题,是断定事物性质的简单命题。
由于在性质命题中,对对象具有或不具有某种性质的断定是直接的,无条件的。因而,逻辑史上把这种命题称为直言命题,以别于假言命题(对对象的某种断定是有条件的)和选言命题(对对象的某种断定是具有选择的)。
矛盾关系 | 非所有=有些不,非有些=所有不 |
上反对关系 | 两个所有必有一假 |
下反对关系 | 两个有些必有一真 |
推出关系 | 所有→特指→有些 有些p是q→有些q是p 有些p是q推不出有些p不是q |
矛盾关系的记忆口诀为“两词互换,后面加不”。
1.5 充分必要关系
对于p→q,p是充分条件,q是必要条件,若p能推出q且q能推迟p,则p、q互为充分必要条件。
充分条件 | 如果....那么...、若...则...等 |
必要条件 | 基础、关键、前提、必须、需要、离不开、必不可少、不可或缺等 |
充分必要条件 | 当且仅当 |
翻译规则 | 充分条件是p。必要条件是q |
可简单记为:随是必要条件随在箭头后面。
1.6 演绎推理、归纳推理、类比推理
一般来说,推理可分为演绎推理,归纳推理和类比推理三种形式。
演绎推理:是指从一般性的前提得出了特殊性的结论的推理。演绎推理包括三段论,假言推理,选言推理等。
归纳推理:即从个别到一般,从特殊性的前提推出普遍的一般结论。归纳推理可分为完全归纳推理、不完全(简单枚举)归纳推理。
类比推理:是指从特殊性的前提得出特殊性的结论。一般情况下,这种推理基于两个或两类对象在某些属性上的相同或相似性,推断它们在其他属性上也可能相同或相似。
三段论推理:演绎推理中的一种简单推理判断。
它包含:一个一般性的原则(大前提),一个附属于前面大前提的特殊化陈述(小前提),以及由此引申出的特殊化陈述符合一般性原则的结论。
常见提示词 | 翻译 |
p并且q、p和q、p同时q、p也q、p还q、p、q | p且q |
p或q、pq至少一个、非p非q至多一个 | p或q |
如果p那么q、若p则q、只要p就q、一p则q、所有p都是q | p→q |
只有p才q、必须p才q、不p不q | q→p |
除非p否则q、必须p否则q、p否则q | 非p→q |
q是p的基础/关键/前提、p离不开/必须/需要q、q必不可少/不可或缺 | p→q |
命题 | 表示 | 命题为真,可推出 | 命题为假,可推出 | 真假判断 | |
联言命题 | p且q | p真且q真 | p、q至少一假 | 一假则假 全真为真 | |
选言命题 | 相容选言命题 | p或q | p、q至少一真 | p、q均为假 | 一真则真 全假则假 |
不相容选言命题 | 要么p 要么q | p、q一真一假 | p、q全假 或p、q全真 | 一真一假为真 全真全假为假 | |
假言命题 | 如果那么 | p→q | p真q真 或p假q真 或p假q假 | p真q真 | p假,命题为真 q真,命题为真 当且仅当p且非q时为假 |
只有才 | |||||
除非否则 |
命题 | 表示 | 推出关系 | 矛盾关系 |
直言命题 | 所有、有些、特指 | 所有→特指→有些 | 两词互换,后面加不 |
模态命题 | 可能、必然 | 必然→可能 |