LeetCode 363. 矩形区域不超过 K 的最大数值和

一、题目

1、题目描述

  给你一个 m × n m \times n m×n 的矩阵 m a t r i x matrix matrix 和一个整数 k k k ,找出并返回矩阵内部矩形区域的不超过 k k k 的最大数值和。题目数据保证总会存在一个数值和不超过 k k k 的矩形区域。
  样例输入: matrix = [[1,0,1],[0,-2,3]], k = 2
  样例输出: 2

2、基础框架

  • C++ 版本给出的基础框架代码如下:
class Solution {
    int maxSumSubmatrix(vector<vector<int>>& matrix, int k) {
    }
};

3、原题链接

LeetCode 363. 矩形区域不超过 K 的最大数值和

二、解题报告

1、思路分析

   ( 1 ) (1) (1) 枚举任意两列 l l l r r r
   ( 2 ) (2) (2) 对于每一行,将在这两列之间的元素累加,转换成一维的问题;
   ( 3 ) (3) (3) 对累加和的数组求前缀和得到 s u m sum sum
   ( 4 ) (4) (4) 于是,就是求 s u m [ i ] − s u m [ t ] ≤ k sum[i] - sum[t] \le k sum[i]sum[t]k s u m [ i ] − s u m [ t ] sum[i] - sum[t] sum[i]sum[t] 的最大值,其中 t ∈ [ 0 , i − 1 ] t \in [0, i-1] t[0,i1]
   ( 5 ) (5) (5) 枚举 i i i,那么 s u m [ i ] sum[i] sum[i] 就是已知的,则 s u m [ t ] ≥ s u m [ i ] − k sum[t] \ge sum[i] - k sum[t]sum[i]k
   ( 6 ) (6) (6) 利用一个 s e t set set 也就是平衡二叉树,每次枚举 i i i 的时候,查找 满足 s u m [ t ] ≥ s u m [ i ] − k sum[t] \ge sum[i] - k sum[t]sum[i]k 的最小的 s u m [ t ] sum[t] sum[t],这一步可以采用二分查找( s e t set set l o w e r b o u n d lower_bound lowerbound 函数);

2、时间复杂度

   最坏时间复杂度 O ( n 3 l o g 2 n ) O(n^3log_2n) O(n3log2n)

3、代码详解

class Solution {
    #define maxn 110

    int maxsum(int m, int sum[maxn], int k) {
        // 1. sum[i] - sum[t]  求最大值
        // 2. t 属于 (0, i-1)
        // 3. sum[i] - sum[t] <= k

        // 可以得到  sum[t] >= sum[i] - k
        int maxv = -1000000000;
        set<int> s;
        s.insert(sum[0]);

        for(int i = 1; i <= m; ++i) {
            // 计算
            auto iter = s.lower_bound(sum[i] - k);
            if(iter != s.end()) {
                maxv = max(maxv, sum[i] - *iter);
            }
            // 插入
            s.insert(sum[i]);
        }
        return maxv;
    }

public:
    int maxSumSubmatrix(vector<vector<int>>& matrix, int k) {
        int i, j, l, r;
        int ret = -1000000000;
        int m = matrix.size();
        int n = matrix[0].size();
        for(i = 0; i < m; ++i) {
            for(j = 1; j < n; ++j) {
                matrix[i][j] += matrix[i][j-1];
            }
        }

        for(l = 0; l < n; ++l) {
            for(r = l; r < n; ++r) {
                int sum[maxn];
                sum[0] = 0;
                for(i = 0; i < m; ++i) {
                    int val = (l == 0) ? matrix[i][r] : (matrix[i][r] - matrix[i][l-1]);
                    sum[i+1] = sum[i] + val; 
                }
                ret = max( ret, maxsum(m, sum, k) );
                if(ret == k) {
                    return ret;
                }
            }
        }

        return ret;
    }
};

三、本题小知识

  平衡二叉树是有序的,所以可以采用二分查找。


四、加群须知

  相信看我文章的大多数都是「 大学生 」,能上大学的都是「 精英 」,那么我们自然要「 精益求精 」,如果你还是「 大一 」,那么太好了,你拥有大把时间,当然你可以选择「 刷剧 」,然而,「 学好算法 」,三年后的你自然「 不能同日而语 」
  那么这里,我整理了「 几十个基础算法 」 的分类,点击开启:

🌌《算法入门指引》🌌

  如果链接被屏蔽,或者有权限问题,可以私聊作者解决。

  大致题集一览:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述



在这里插入图片描述


  为了让这件事情变得有趣,以及「 照顾初学者 」,目前题目只开放最简单的算法 「 枚举系列 」 (包括:线性枚举、双指针、前缀和、二分枚举、三分枚举),当有 一半成员刷完 「 枚举系列 」 的所有题以后,会开放下个章节,等这套题全部刷完,你还在群里,那么你就会成为「 夜深人静写算法 」专家团 的一员。
  不要小看这个专家团,三年之后,你将会是别人 望尘莫及 的存在。如果要加入,可以联系我,考虑到大家都是学生, 没有「 主要经济来源 」,在你成为神的路上,「 不会索取任何 」
  🔥联系作者,或者扫作者主页二维码加群,加入刷题行列吧🔥


🔥让天下没有难学的算法🔥

C语言免费动漫教程,和我一起打卡!
🌞《光天化日学C语言》🌞

让你养成九天持续刷题的习惯
🔥《九日集训》🔥

入门级C语言真题汇总
🧡《C语言入门100例》🧡

组团学习,抱团生长
🌌《算法零基础100讲》🌌

几张动图学会一种数据结构
🌳《画解数据结构》🌳

竞赛选手金典图文教程
💜《夜深人静写算法》💜
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

英雄哪里出来

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值