题目描述 Description
在某个遥远的国家里,有 n个城市。编号为 1,2,3,…,n。这个国家的政府修建了m 条双向道路,每条道路连接着两个城市。政府规定从城市 S 到城市 T 需要收取的过路费为所经过城市之间道路长度的最大值。如:A到B长度为 2,B到C 长度为3,那么开车从 A经过 B到C 需要上交的过路费为 3。
佳佳是个做生意的人,需要经常开车从任意一个城市到另外一个城市,因此他需要频繁地上交过路费,由于忙于做生意,所以他无时间来寻找交过路费最低的行驶路线。然而, 当他交的过路费越多他的心情就变得越糟糕。 作为秘书的你,需要每次根据老板的起止城市,提供给他从开始城市到达目的城市,最少需要上交多少过路费。
第一行是两个整数 n 和m,分别表示城市的个数以及道路的条数。
接下来 m 行,每行包含三个整数 a,b,w(1≤a,b≤n,0≤w≤10^9),表示a与b之间有一条长度为 w的道路。
接着有一行为一个整数 q,表示佳佳发出的询问个数。
再接下来 q行,每一行包含两个整数 S,T(1≤S,T≤n,S≠T), 表示开始城市S 和目的城市T。
输出描述 Output Description
输出共q行,每行一个整数,分别表示每个询问需要上交的最少过路费用。输入数据保证所有的城市都是连通的。
4 5
1 2 10
1 3 20
1 4 100
2 4 30
3 4 10
2
1 4
4 1
样例输出 Sample Output
20
20
数据范围及提示 Data Size & Hint
对于 30%的数据,满足 1≤ n≤1000,1≤m≤10000,1≤q≤100;
对于 50%的数据,满足 1≤ n≤10000,1≤m≤10000,1≤q≤10000;
对于 100%的数据,满足 1≤ n≤10000,1≤m≤100000,1≤q≤10000;
思路:
要使费用最小,那么就要跑最短路
但是直接spfa只有30分
可以发现 最短路一定在最小生成树上
那么就建树,去掉多余的边,在树上跑LCA
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#define MAXN 100010
using namespace std;
struct node {
int to;
int next;
int val;
};
node e[MAXN];
struct data {
int x;
int y;
int z;
bool operator < (data b) const {
return z<b.z;
}
};
data a[MAXN];
int head[MAXN],tot;
int n,m,t,cnt;
int fa[MAXN];
int f[MAXN],deep[MAXN],dis[MAXN];
inline void read(int&x) {
int f=1;x=0;char c=getchar();
while(c>'9'||c<'0') {if(c=='-') f=-1;c=getchar();};
while(c>='0'&&c<='9') x=10*x+c-48,c=getchar();
x*=f;
}
inline void add(int x,int y,int z) {
e[++tot].to=y;
e[tot].val=z;
e[tot].next=head[x];
head[x]=tot;
}
inline int find(int x) {
if(x==fa[x]) return x;
fa[x]=find(fa[x]);
return fa[x];
}
inline void kurskal() {
for(int i=1;i<=n;i++) fa[i]=i;
sort(a+1,a+m+1);
for(int i=1;i<=m;i++) {
int f1=find(a[i].x);
int f2=find(a[i].y);
if(f1!=f2) {
fa[f1]=f2;
add(a[i].x,a[i].y,a[i].z);
add(a[i].y,a[i].x,a[i].z);
cnt++;
}
if(cnt==n-1) break;
}
}
inline void dfs(int now,int from,int dep,int v) {
f[now]=from;
deep[now]=dep;
dis[now]=v;
for(int i=head[now];i;i=e[i].next) {
int v=e[i].to;
if(v!=from)
dfs(v,now,dep+1,e[i].val);
}
}
inline int lca(int a,int b) {
int ans=0;
while(deep[a]>deep[b]) ans=max(ans,dis[a]),a=f[a];
while(deep[b]>deep[a]) ans=max(ans,dis[b]),b=f[b];
if(a==b) return ans;
while(a!=b) {
ans=max(ans,dis[b]);
ans=max(ans,dis[a]);
a=f[a],b=f[b];
}
return ans;
}
int main() {
read(n);read(m);
for(int i=1;i<=m;i++) read(a[i].x),read(a[i].y),read(a[i].z);
kurskal();
dfs(1,-1,0,0);
read(t);
int x,y,z;
for(int i=1;i<=t;i++) {
read(x),read(y);
int ans=lca(x,y);
printf("%d\n",ans);
}
return 0;
}