Codevs 1519 过路费

13 篇文章 0 订阅
5 篇文章 0 订阅

题目描述 Description

在某个遥远的国家里,有 n个城市。编号为 1,2,3,…,n。这个国家的政府修建了m 条双向道路,每条道路连接着两个城市。政府规定从城市 S 到城市 T 需要收取的过路费为所经过城市之间道路长度的最大值。如:A到B长度为 2,B到C 长度为3,那么开车从 A经过 B到C 需要上交的过路费为 3。
佳佳是个做生意的人,需要经常开车从任意一个城市到另外一个城市,因此他需要频繁地上交过路费,由于忙于做生意,所以他无时间来寻找交过路费最低的行驶路线。然而, 当他交的过路费越多他的心情就变得越糟糕。 作为秘书的你,需要每次根据老板的起止城市,提供给他从开始城市到达目的城市,最少需要上交多少过路费。

输入描述 Input Description

第一行是两个整数 n 和m,分别表示城市的个数以及道路的条数。 
接下来 m 行,每行包含三个整数 a,b,w(1≤a,b≤n,0≤w≤10^9),表示a与b之间有一条长度为 w的道路。
接着有一行为一个整数 q,表示佳佳发出的询问个数。 
再接下来 q行,每一行包含两个整数 S,T(1≤S,T≤n,S≠T), 表示开始城市S 和目的城市T。

输出描述 Output Description

输出共q行,每行一个整数,分别表示每个询问需要上交的最少过路费用。输入数据保证所有的城市都是连通的。

样例输入 Sample Input

4 5 
1 2 10 
1 3 20 
1 4 100 
2 4 30 
3 4 10 
2 
1 4 
4 1

样例输出 Sample Output

20 
20

数据范围及提示 Data Size & Hint

对于 30%的数据,满足 1≤ n≤1000,1≤m≤10000,1≤q≤100; 
对于 50%的数据,满足 1≤ n≤10000,1≤m≤10000,1≤q≤10000; 
对于 100%的数据,满足 1≤ n≤10000,1≤m≤100000,1≤q≤10000;

思路:

要使费用最小,那么就要跑最短路
但是直接spfa只有30分 
可以发现 最短路一定在最小生成树上
那么就建树,去掉多余的边,在树上跑LCA

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#define MAXN 100010
using namespace std;
struct node {
    int to;
    int next;
    int val;
};
node e[MAXN];
struct data {
    int x;
    int y;
    int z;
    bool operator < (data b) const {
        return z<b.z;
    }
};
data a[MAXN];
int head[MAXN],tot;
int n,m,t,cnt;
int fa[MAXN];
int f[MAXN],deep[MAXN],dis[MAXN];
inline void read(int&x) {
    int f=1;x=0;char c=getchar();
    while(c>'9'||c<'0') {if(c=='-') f=-1;c=getchar();};
    while(c>='0'&&c<='9') x=10*x+c-48,c=getchar();
    x*=f;
}
inline void add(int x,int y,int z) {
    e[++tot].to=y;
    e[tot].val=z;
    e[tot].next=head[x];
    head[x]=tot;
}
inline int find(int x) {
    if(x==fa[x]) return x;
    fa[x]=find(fa[x]);
    return fa[x];
}
inline void kurskal() {
    for(int i=1;i<=n;i++) fa[i]=i;
    sort(a+1,a+m+1);
    for(int i=1;i<=m;i++) {
        int f1=find(a[i].x);
        int f2=find(a[i].y);
        if(f1!=f2) {
            fa[f1]=f2;
            add(a[i].x,a[i].y,a[i].z);
            add(a[i].y,a[i].x,a[i].z);
            cnt++;
        }
        if(cnt==n-1) break;
    }
}
inline void dfs(int now,int from,int dep,int v) {
    f[now]=from;
    deep[now]=dep;
    dis[now]=v;
    for(int i=head[now];i;i=e[i].next) {
        int v=e[i].to;
        if(v!=from)
        dfs(v,now,dep+1,e[i].val);
    }
}
inline int lca(int a,int b) {
    int ans=0;
    while(deep[a]>deep[b]) ans=max(ans,dis[a]),a=f[a];
    while(deep[b]>deep[a]) ans=max(ans,dis[b]),b=f[b];
    if(a==b) return ans;
    while(a!=b) {
        ans=max(ans,dis[b]);
        ans=max(ans,dis[a]);
        a=f[a],b=f[b];
    }
    return ans;
}
int main() {
    read(n);read(m);
    for(int i=1;i<=m;i++) read(a[i].x),read(a[i].y),read(a[i].z);
    kurskal();
    dfs(1,-1,0,0);
    read(t);
    int x,y,z;
    for(int i=1;i<=t;i++) {
        read(x),read(y);
        int ans=lca(x,y);
        printf("%d\n",ans);
    }
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值