UVAlive 4100 - Sharif Super Computer (2SAT)

介绍SSC超级计算机的设计方案,特别是其独特的网络结构,包括使用不同速度的电缆来确保处理器间高效通信,并讨论如何优化网络布局以减少延迟。

Description

Download as PDF

SSC is a super computer designed in Sharif University having 2 ``master" and n ``slave" processors. It can run softwares in parallel: One of the master processors loads the software on the slave processors such that the memory and CPU usage among them are balanced, while the other master is used for monitoring the system.

Because of the dependencies between different parts of the software, many messages should be exchanged between processors. A very fast network is needed to minimize the message passing overhead. To optimize the network, a clique structure will be constructed in which there is a direct communication cable between each pair of processors.

There are two different cables: blue cables which can transmit up to 100 Megabits per second and red cables which can transmit up to 1 Gigabits per second. Each pair of slave processors will be connected by one blue cable. Due to the higher communication volume on master processors, the two masters are connected by one red cable and also each master is connected to each slave by another red cable.

SSC is thus made of n + 2 motherboards, each containing exactly one processor, the needed memory, and also n + 1 similar network sockets installed as a horizontal array. The motherboards are put in a vertical rack box, each in one horizontal shelf. So, each motherboard is uniquely identified by its height in the rack.

The cooling system has forced us to put the two master motherboards in the lowest and highest shelves of the rack. We assume that the master in the bottom has height 0, and the heights of the other motherboards are integers higher than 0. You, as a computer engineer, are asked to do the final assembly of SSC. You are given the empty rack box, the ready motherboards, and your job is to determine whether you can put the boards in the rack that satisfy the constraints and cable lengths.

There are exactly 2n + 1 red cables available with the given sizes. However the blue cables are available in m different sizes, and we have unlimited number of cables in each size. You are so careful to keep the cabling between processors tidy and tight, so you want to install the motherboards in the heights such that the size of cable used between each pair of motherboards is exactly equal to the difference between the heights of two boards.

Input

There are multiple test cases in the input. The first line of each test case contains two numbers n(1$ \le$n$ \le$100) and m(1$ \le$m$ \le$1000) . The second line contains 2n + 1 integers, which are the sizes of Gigabit Ethernet cables. The third line contains m integers which are the sizes of Megabit Ethernet cable groups. The last line of the input contains two zero numbers.

Output

For each data set you should write n + 1 integers as the heights of the motherboards in SSC rack box. The first number represents the height of the top master processor, and the remaining n integers are the positions of the slaves in an increasing order. In the case of having multiple solutions write the one with the minimum alphabetical order. If there is no solution write `` Impossible".

Sample Input

3 3 
3 7 7 10 10 14 17 
3 4 7 
3 3 
3 7 7 10 10 14 17 
3 4 8 
0 0

Sample Output

17 3 7 10 
Impossible
 
     

直接按照书上的思路写的。要注意的细节是,最开始2*n条边不能两两配对则false。

输出答案前记得先排序。

#include<cstdio>
#include<map>
#include<queue>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<list>
#include<set>
#include<cmath>
using namespace std;
const int maxn = 1e3 + 5;
const int INF = 1e9;
const double eps = 1e-6;
typedef unsigned long long ULL;
typedef long long LL;
typedef pair<int, int> P;
#define fi first
#define se second

int blue[maxn];
map<int, int> M;

struct TwoSAT{
    int n;
    vector<int> G[maxn*2];
    bool mark[maxn*2];
    int S[maxn*2], c;

    bool dfs(int x){
        if(mark[x^1]) return false;
        if(mark[x]) return true;
        mark[x] = true;
        S[c++] = x;
        for(int i = 0;i < G[x].size();i++){
            if(!dfs(G[x][i])) return false;
        }
        return true;
    }

    void init(int n){
        this -> n = n;
        for(int i = 0;i < n*2;i++) G[i].clear();
        memset(mark, 0, sizeof mark);
    }

    bool solve(){
        for(int i = 0;i < n*2;i += 2)
        if(!mark[i] && !mark[i+1]){
            c = 0;
            if(!dfs(i)){
                while(c > 0) mark[S[--c]] = false;
                if(!dfs(i+1)) return false;
            }
        }
        return true;
    }
};

TwoSAT solver;

P pos[maxn];

int abs(int x){
    return x<0?-x:x;
}

vector<int> ans;

int main(){
    int n, m;
    while(cin >> n >> m){
        if(n == 0 && m == 0)
            break;
        for(int i = 0;i < 2*n+1;i++){
            cin >> blue[i];
        }
        sort(blue, blue+2*n+1);
        bool ok = true;
        for(int i = 0;i < n;i++){
            pos[i] = P(blue[i], blue[2*n-i-1]);
            if(blue[i]+blue[2*n-i-1] != blue[2*n])
                ok = false;
        }
        M.clear();
        for(int i = 0;i < m;i++){
            int x;
            cin >> x;
            M[x] = 1;
        }

        solver.init(n);
        for(int i = 0;i < n;i++){
            int x1 = pos[i].fi;
            int y1 = pos[i].se;
            for(int j = i+1;j < n;j++){
                int x2 = pos[j].fi;
                int y2 = pos[j].se;
                if(M.count(abs(x1-x2))==0 && M.count(abs(x1-y2))==0){
                    solver.G[2*i].push_back(2*i+1);
                    solver.G[2*i+1].push_back(2*i);
                }
                else if(M.count(abs(x1-x2))==0)
                    solver.G[2*i].push_back(2*j+1);
                else if(M.count(abs(x1-y2))==0)
                    solver.G[2*i].push_back(2*j);

                if(M.count(abs(y1-x2))==0 && M.count(abs(y1-y2))==0){
                    solver.G[2*i].push_back(2*i+1);
                    solver.G[2*i+1].push_back(2*i);
                }
                else if(M.count(abs(y1-x2))==0)
                    solver.G[2*i+1].push_back(2*j+1);
                else if(M.count(abs(y1-y2))==0)
                    solver.G[2*i+1].push_back(2*j);
            }
        }
        if(ok && solver.solve()){
            cout << blue[2*n] << ' ';
            ans.clear();
            for(int i = 0;i < n;i++){
                if(solver.mark[2*i])
                    ans.push_back(pos[i].fi);
                else
                    ans.push_back(pos[i].se);
            }
            sort(ans.begin(), ans.end());
            for(int i = 0;i < ans.size();i++)
                cout << ans[i] << ' ';
            puts("");
        }
        else
            puts("Impossible");
    }
    return 0;
}


**项目概述:** 本资源提供了一套采用Vue.js与JavaScript技术栈构建的古籍文献文字检测与识别系统的完整源代码及相关项目文档。当前系统版本为`v4.0+`,基于`vue-cli`脚手架工具开发。 **环境配置与运行指引:** 1. **获取项目文件**后,进入项目主目录。 2. 执行依赖安装命令: ```bash npm install ``` 若网络环境导致安装缓慢,可通过指定镜像源加速: ```bash npm install --registry=https://registry.npm.taobao.org ``` 3. 启动本地开发服务器: ```bash npm run dev ``` 启动后,可在浏览器中查看运行效果。 **构建与部署:** - 生成测试环境产物: ```bash npm run build:stage ``` - 生成生产环境优化版本: ```bash npm run build:prod ``` **辅助操作命令:** - 预览构建后效果: ```bash npm run preview ``` - 结合资源分析报告预览: ```bash npm run preview -- --report ``` - 代码质量检查与自动修复: ```bash npm run lint npm run lint -- --fix ``` **适用说明:** 本系统代码经过完整功能验证,运行稳定可靠。适用于计算机科学、人工智能、电子信息工程等相关专业的高校师生、研究人员及开发人员,可用于学术研究、课程实践、毕业设计或项目原型开发。使用者可在现有基础上进行功能扩展或定制修改,以满足特定应用场景需求。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
【EI复现】基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度(Matlab代码实现)内容概要:本文介绍了基于阶梯碳交易机制的虚拟电厂优化调度模型,重点研究了包含P2G-CCS(电转气-碳捕集与封存)耦合技术和燃气掺氢技术的综合能源系统在Matlab平台上的仿真与代码实现。该模型充分考虑碳排放约束与阶梯式碳交易成本,通过优化虚拟电厂内部多种能源设备的协同运行,提升能源利用效率并降低碳排放。文中详细阐述了系统架构、数学建模、目标函数构建(涵盖经济性与环保性)、约束条件处理及求解方法,并依托YALMIP工具包调用求解器进行实例验证,实现了科研级复现。此外,文档附带网盘资源链接,提供完整代码与相关资料支持进一步学习与拓展。; 适合人群:具备一定电力系统、优化理论及Matlab编程基础的研究生、科研人员或从事综合能源系统、低碳调度方向的工程技术人员;熟悉YALMIP和常用优化算法者更佳。; 使用场景及目标:①学习和复现EI级别关于虚拟电厂低碳优化调度的学术论文;②掌握P2G-CCS、燃气掺氢等新型低碳技术在电力系统中的建模与应用;③理解阶梯碳交易机制对调度决策的影响;④实践基于Matlab/YALMIP的混合整数线性规划或非线性规划问题建模与求解流程。; 阅读建议:建议结合提供的网盘资源,先通读文档理解整体思路,再逐步调试代码,重点关注模型构建与代码实现之间的映射关系;可尝试修改参数、结构或引入新的约束条件以深化理解并拓展应用场景。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值