给定坐标轴上的 n 个区间段,每个段的端点为整数坐标。有些段可以是一个点,可以彼此相交、相互嵌套,甚至重合,对于任意区间,0≤li ≤ ri≤6×105。
任务如下:对于每个 k ∈[1..n],计算被 k 个区间段覆盖的整数坐标点的个数。点 x被端点为 li 和 ri 的区间段覆盖,当且仅当 li≤ x ≤ri。
【输入形式】
输入的第一行为一个整数 n(1≤ n ≤ 2⋅ 105),区间段的个数。
接下来的 n 行,每行一个整数对 li 和 ri,表示第 i 个区间的端点。
【输出形式】
输出 n 个用空格分隔的整数cnt1、cnt2、...、cntn,这里 cnti 为被 i 个区间覆盖的点的个数。
#include<iostream>
using namespace std;
int num[600000];
int main()
{
/*
已知
n个区间段
[li,ri]
求
被i个区间 覆盖的点的个数。
限制
对于任意区间,0≤li ≤ ri≤6×105
*/
int n;
cin>>n;
int l[n],r[n],sum[n]; //n对端点 定义n+1格
for(int ii=0; ii<600000; ii++)
{
num[ii]=0;
}
for(int ii=0; ii<n; ii++)
{
l[ii]=0;
r[ii]=0;
sum[ii]=0;
}
for(int i=0; i<n; i++) //sum[i]表示i+1个区间覆盖的点总数
{
cin>>l[i]>>r[i]; //第0对-n-1对
for(int m=l[i]; m<=r[i]; m++) //m遍历一段区间
{
num[m]++;
}
}
//此时待求对应为 某值的数组元素的数量的总和
for(int i=0; i<600000; i++)
{
for(int j=0; j<n; j++)
{
if(num[i]==j+1)
sum[j]++;
}
}
//----------------------------
for(int j=0; j<n; j++)
{
cout<<sum[j]<<" ";
}
return 0;
}