被i个区间覆盖的点问题

   给定坐标轴上的 n 个区间段,每个段的端点为整数坐标。有些段可以是一个点,可以彼此相交、相互嵌套,甚至重合,对于任意区间,0≤li ≤ ri≤6×105

       任务如下:对于每个 k ∈[1..n],计算被 k 个区间段覆盖的整数坐标点的个数。点 x被端点为 li  ri  的区间段覆盖,当且仅当 li≤ ri

【输入形式】

       输入的第一行为一个整数 n(1≤ n ≤ 2⋅ 105),区间段的个数。

       接下来的 n 行,每行一个整数对 li 和 ri,表示第 i 个区间的端点。
【输出形式】

       输出 n 个用空格分隔的整数cnt1、cnt2、...、cntn,这里 cnti 为被 i 个区间覆盖的点的个数。

 

#include<iostream>
using namespace std;
int num[600000]; 
int main()
{

	/*
	已知
	 	 n个区间段
	 	[li,ri]

	 求
	 	被i个区间 覆盖的点的个数。
	 限制
	 	对于任意区间,0≤li ≤ ri≤6×105
	 */
	int n;
	cin>>n;
	int l[n],r[n],sum[n]; //n对端点 定义n+1格

	for(int ii=0; ii<600000; ii++)
	{
		num[ii]=0;
	}
	for(int ii=0; ii<n; ii++)
	{
		l[ii]=0;
		r[ii]=0;
		sum[ii]=0;
	}

	for(int i=0; i<n; i++)	//sum[i]表示i+1个区间覆盖的点总数
	{
		cin>>l[i]>>r[i]; //第0对-n-1对
		for(int m=l[i]; m<=r[i]; m++) //m遍历一段区间
		{
			num[m]++;
		}
	}
	//此时待求对应为 某值的数组元素的数量的总和
	for(int i=0; i<600000; i++)
	{
		for(int j=0; j<n; j++)
		{
			if(num[i]==j+1)
				sum[j]++;

		}
	}
	//----------------------------
	for(int j=0; j<n; j++)
	{
		cout<<sum[j]<<" ";
	}

	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值