数据结构与算法 第07部分:图的存储(邻接矩阵)

1:邻接矩阵创建无向图(定义)

#define MaxVnum 100  //顶点数最大值
typedef char VexType;  //顶点的数据类型,根据需要定义
typedef int EdgeType;  //边上权值的数据类型,若不带权值的图,则为0或1
typedef struct{
	VexType Vex[MaxVnum];
	EdgeType Edge[MaxVnum][MaxVnum];
	int vexnum,edgenum; //顶点数,边数
}AMGragh;

2:查找顶点信息的下标

//查找顶点信息的下标
int locatevex(AMGragh G,VexType x)
{
	for (int nIndex = 0; nIndex < G.vexnum; nIndex++)//查找顶点信息的下标
	{
		if (x == G.Vex[nIndex])
		{
			return nIndex;
		}			
	}      
    return -1;//没找到
}

3:创建邻接矩阵

//创建邻接矩阵
void CreateAMGraph(AMGragh &G,int nVexnum,int nEdgenum)
{
	G.vexnum = nVexnum;//顶点数
    G.edgenum = nEdgenum;//边数

    cout << "请输入顶点信息:"<<endl;
	for (int i = 0; i < G.vexnum; i++)//输入顶点信息,存入顶点信息数组
	{
		cin >> G.Vex[i];
	}
       
    for(int i=0;i<G.vexnum;i++)//初始化邻接矩阵所有值为0,如果是网,则初始化邻接矩阵为无穷大
      for(int j=0;j<G.vexnum;j++)
         G.Edge[i][j]=0;

	int nIndexU, nIndexV;
	VexType u, v;
    cout << "请输入每条边依附的两个顶点:"<<endl;
    while(G.edgenum--)
    {
       cin>>u>>v;
	   nIndexU = locatevex(G,u);//查找顶点u的存储下标
	   nIndexV = locatevex(G,v);//查找顶点v的存储下标
	   if (nIndexU != -1 && nIndexV != -1)
	   {
		   G.Edge[nIndexU][nIndexV] = G.Edge[nIndexV][nIndexU] = 1; //邻接矩阵储置1
	   }      
       else
       {
           cout << "输入顶点信息错!请重新输入!"<<endl;
           G.edgenum++;//本次输入不算
       }
    }
}

4:输出邻接矩阵

void print(AMGragh G)//输出邻接矩阵
{
    cout<<"图的邻接矩阵为:"<<endl;
    for(int i=0;i<G.vexnum;i++)
    {
		for (int j = 0; j < G.vexnum; j++)
		{
			cout << G.Edge[i][j] << "\t";
		}       
        cout<<endl;
    }
}

5:基于邻接矩阵的深度优先遍历

void DFS_AM(AMGragh G,int v)//基于邻接矩阵的深度优先遍历
{
    cout<<G.Vex[v]<<"\t";
    visited[v]=true;
	for (int w = 0; w < G.vexnum; w++)//依次检查v的所有邻接点
	{
		if (G.Edge[v][w] && !visited[w])//v、w邻接而且w未被访问
		{
			DFS_AM(G, w);//从w顶点开始递归深度优先遍历
		}		
	}     
}

6:基于邻接矩阵的广度优先遍历

void BFS_AM(AMGragh G,int v)//基于邻接矩阵的广度优先遍历
{
    queue<int> Q; //创建一个普通队列(先进先出),里面存放int类型
    cout<<G.Vex[v]<<"\t";
    visited[v]=true;
    Q.push(v); //源点v入队
    while(!Q.empty()) //如果队列不空
    {
		int u = Q.front();//取出队头元素赋值给u
        Q.pop(); //队头元素出队
        for(int w = 0 ; w < G.vexnum ; w++)//依次检查u的所有邻接点
        {
            if(G.Edge[u][w] && !visited[w])//u、w邻接而且w未被访问
            {
               cout<<G.Vex[w]<<"\t";
               visited[w] = true;
               Q.push(w);
            }
        }
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员的资料库

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值