文章目录
一、项目背景
该数据初级分析报告跟据数据集已有字段分成四部分.
二、结论先行
2.1用户行为漏斗转化分析
- 综合复购率和跳失率来看,淘宝APP的用户忠诚度较高且内容质量高.
- 以独立用户分析维度,整体购买转化率较高,可满足大多数用户的需求,但整体用户行为漏斗分析点击转化率总体偏低.
优化方法:
- 重点维系用户忠诚度,可以吸引用户持续使用APP,从提高客服素质,简化购买流程,建立老客户社群,鼓励用户使用收藏,撰写评论等.最大程度地提高用户的参与感.
- 比对环节是提升重点,APP可以从推荐机制入手,以用户日常行为为依据,尽量精准推荐,并且需要匹配相关度更高的关键词,完善商品关键词设置制度和搜索算法,减少用户寻找商品的时间成本.
2.2时间维度分析用户行为
- 日期维度来看,周末或者周中的数据差异不是很大,但会受到购物节活动的影响,如第二个周末就双十二的影响导致用户点击和加购的行为数量明显增加.
- 时间维度上来看,一天内用户的各种行为数据差异较大.可作为参考制定营销策略.
优化方法
- 可以进一步扩大分析范畴,如以整年为单位进行环比分析,标注出各个比较大的购物节,重点关心购物节前后的用户行为数量变化,同时对每周末进行比较,分析购物节推广活动安排在周末/非周末对用户行为的影响.
- 用户的各种行为活跃高峰期都在晚间的21点左右,可以考虑在这个时间做一些力度较大的优惠活动,也可以将转化行为的时间安排在这个时间段,如直播带货等来进行用户的活跃度提升及转化.用户在晚间的行为更偏向于浏览商品,白天10点左右购买行为的比率较高,可以根据这个特性在晚间对商品进行宣传,然后在白天进行转化.
2.3商品维度分析用户行为
- 购买量与浏览量的相关性比较差.淘宝APP符合长尾效应,主要营收靠长尾效应的累积效应,而并非某种"爆款商品".
优化方法
- 根据四象限划分图的分析,应重点提升第二象限及第三象限的商品.
-
针对第二象限商品,需要分析商品特征与用户画像,收集该类商品的个性化信息和用户特征,分析 该商品是否属于垂直刚需商品,是否存在特定的消费群体.
- 若存在,商家可以针对该类用户推测出特定活动,做到精准推送,或建立该类商品受众的专属社群,提供用户交流平台,进一步增加用户粘性.
- 若不存在,则商家应该加大宣传力度,多做宣传,增加商品权重,设置高频率搜索关键词,设计亮眼的宣传图等,增加用户的浏览量,销量也会随之提升.
-
针对第三象限商品,可以尝试提高商品的曝光量,若提高商品曝光量后商品的销量还是比较低迷,就需要考虑商品本身是否是用户真正需要的,效果不好的商品也可以直接优化掉.
- 对于B端商家来说,也可以打造爆款商品来减少商品种类繁多的运营及库存成本.针对销量排行榜前面的商品可以增加其曝光率推荐率,在用户搜索时进行优先展现.
2.4RFM模型用户价值分析
- 对用户群体进行划分,挽留用户,易流失用户占比较高,发展用户,忠诚用户占比较少,可以根据不同的标签采取不同的运营策略.
优化方法
- 忠诚用户:重点关注,制定专属的运营策略进行维护,应该提高满意度,增加留存,保证用户粘性.
- 易流失用户和发展用户:可以举行折扣活动或捆绑销售来增加用户的购买频率,定期推送消息,对用户进行召回.
- 挽留用户占比最高,需要关注他们的购物习性,发掘潜在价值,定时促活,做到精准化营销,以提升他们的购买意愿,提升转化率.
三、数据分析
3.1数据来源
阿里云天池[数据集-阿里云天池 (aliyun.com)]
3.2数据说明
本数据集共有100万条左右数据,数据为淘宝APP2017年11月25日至12月3日期的用户行为数据,共计5列字段.
3.3字段说明
列名称 | 说明 |
---|---|
userID | 整数类型,序列化后的用户ID |
itemID | 整数类型,序列化后的商品ID |
categoryID | 整数类型,序列化后的商品所属类目ID |
behaviour | 字符串,用户行为类别,包括(‘pv’,‘buy’,‘cart’,‘fav’) |
Timestamp | 行为发生的时间戳 |
行为类别 | 说明 |
---|---|
pv | 商品详情页pv,等价于点击 |
buy | 商品购买 |
cart | 将商品加入购物车 |
fav | 收藏商品 |
四、数据预处理
4.1导入数据
使用navicat导入数据.
新建数据库,导入外部数据
CREATE DATABASE IF not EXISTS 淘宝用户行为分析
4.2选择子集
查询发现导入的数据有1亿条,这次是取100w条进行分析,所以对100w以后的数据进行删除(由于版权问题使用navicat选择导入100W条数据,后使用vscode插件进行后续数据处理与分析)
导入的数据中第一个字段有重复值,所以增加一个ID标识列并设置为主键,便于删除.
#userID字段列含重复值,增加ID列设置主键,方便删除
ALTER TABLE `淘宝用户行为分析` ADD COLUMN
id INT(8) PRIMARY KEY AUTO_INCREMENT;
#筛选前100万条数据
DELETE FROM `淘宝用户行为分析` WHERE id>1000000;
#查看数据是否为100万条
SELECT COUNT(*) FROM `淘宝用户行为分析`;
#查看前二十行的表结构
SELECT * FROM `淘宝用户行为分析` LIMIT 20;
4.3列名重命名
使用表修改语法对列名与数据类型进行修改.
alter table `淘宝用户行为分析` change column 1 userID varchar;
alter table `淘宝用户行为分析` change column 2268318 itemID varchar;
alter table `淘宝用户行为分析` change column 2520377 categoryID varchar;
alter table `淘宝用户行为分析` change column pv behaviour varchar;
alter table `淘宝用户行为分析` change column 1511544070 Timestamp varchar;
4.4删除重复值
#检查是否存在重复值
SELECT
(SELECT COUNT(*)
FROM `淘宝用户行为分析`
GROUP BY userID,itemID,categoryID,behaviour,`Timestamp`
HAVING COUNT(*)>1)
AS 查询结果;